| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnpncand | GIF version | ||
| Description: Addition/subtraction cancellation law. (Contributed by Scott Fenton, 14-Dec-2017.) |
| Ref | Expression |
|---|---|
| pnpncand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pnpncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| pnpncand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| pnpncand | ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnpncand.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pnpncand.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | pnpncand.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 2, 3 | subcld 8396 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℂ) |
| 5 | 1, 4 | addcld 8105 | . . 3 ⊢ (𝜑 → (𝐴 + (𝐵 − 𝐶)) ∈ ℂ) |
| 6 | 5, 2, 3 | subsub2d 8425 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) − (𝐵 − 𝐶)) = ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵))) |
| 7 | 1, 4 | pncand 8397 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) − (𝐵 − 𝐶)) = 𝐴) |
| 8 | 6, 7 | eqtr3d 2241 | 1 ⊢ (𝜑 → ((𝐴 + (𝐵 − 𝐶)) + (𝐶 − 𝐵)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 + caddc 7941 − cmin 8256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-setind 4590 ax-resscn 8030 ax-1cn 8031 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-sub 8258 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |