ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncand Unicode version

Theorem pncand 8218
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
pncand  |-  ( ph  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncand
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 pncan 8112 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5850   CCcc 7759    + caddc 7764    - cmin 8077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-resscn 7853  ax-1cn 7854  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-sub 8079
This theorem is referenced by:  mvlraddd  8270  mvlladdd  8271  mvrraddd  8272  addlsub  8276  pnpncand  8281  pncan1  8283  icoshftf1o  9935  nnsplit  10080  uzsinds  10385  zesq  10581  resqrexlemcalc2  10966  iser3shft  11296  fisumrev2  11396  fprodp1  11550  uzwodc  11979  hashdvds  12162  pythagtriplem4  12209  pythagtriplem6  12211  pythagtriplem7  12212  pythagtriplem12  12216  pythagtriplem14  12218  pcqdiv  12248  ennnfonelemp1  12348  blhalf  13123  trilpolemeq1  13994  trilpolemlt1  13995  nconstwlpolemgt0  14017
  Copyright terms: Public domain W3C validator