| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| subcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | subcl 8345 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: pnpncand 8521 kcnktkm1cn 8529 muleqadd 8815 ofnegsub 9109 peano2zm 9484 peano5uzti 9555 modqmuladdnn0 10590 modsumfzodifsn 10618 hashfz 11043 hashfzo 11044 ccatswrd 11202 pfxccatin12lem2 11263 shftfvalg 11329 ovshftex 11330 shftfibg 11331 shftfval 11332 shftdm 11333 shftfib 11334 shftval 11336 2shfti 11342 crre 11368 remim 11371 remullem 11382 resqrexlemover 11521 resqrexlemcalc1 11525 abssubne0 11602 abs3lem 11622 caubnd2 11628 maxabslemlub 11718 maxabslemval 11719 maxcl 11721 minabs 11747 bdtrilem 11750 bdtri 11751 climuni 11804 mulcn2 11823 reccn2ap 11824 cn1lem 11825 climcvg1nlem 11860 fsumparts 11981 arisum2 12010 geosergap 12017 geo2sum2 12026 geoisum1c 12031 cvgratnnlemrate 12041 sinval 12213 sinf 12215 tanval2ap 12224 tanval3ap 12225 sinneg 12237 efival 12243 cos12dec 12279 bitsinv1lem 12472 pythagtriplem1 12788 pythagtriplem14 12800 pythagtriplem16 12802 pythagtriplem17 12803 dvdsprmpweqle 12860 4sqlem5 12905 mul4sqlem 12916 4sqlem17 12930 addcncntoplem 15235 mulcncflem 15281 cnopnap 15285 limcimolemlt 15338 limcimo 15339 cnplimclemle 15342 limccnp2lem 15350 dvlemap 15354 dvconst 15368 dvid 15369 dvconstre 15370 dvidre 15371 dvconstss 15372 dvcnp2cntop 15373 dvaddxxbr 15375 dvmulxxbr 15376 dvcoapbr 15381 dvcjbr 15382 dvrecap 15387 dveflem 15400 dvef 15401 sin0pilem1 15455 ptolemy 15498 tangtx 15512 cosq34lt1 15524 lgsdirprm 15713 gausslemma2dlem1a 15737 qdencn 16395 trirec0 16412 apdifflemf 16414 apdifflemr 16415 apdiff 16416 |
| Copyright terms: Public domain | W3C validator |