| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| subcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | subcl 8225 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 |
| This theorem is referenced by: pnpncand 8401 kcnktkm1cn 8409 muleqadd 8695 ofnegsub 8989 peano2zm 9364 peano5uzti 9434 modqmuladdnn0 10460 modsumfzodifsn 10488 hashfz 10913 hashfzo 10914 shftfvalg 10983 ovshftex 10984 shftfibg 10985 shftfval 10986 shftdm 10987 shftfib 10988 shftval 10990 2shfti 10996 crre 11022 remim 11025 remullem 11036 resqrexlemover 11175 resqrexlemcalc1 11179 abssubne0 11256 abs3lem 11276 caubnd2 11282 maxabslemlub 11372 maxabslemval 11373 maxcl 11375 minabs 11401 bdtrilem 11404 bdtri 11405 climuni 11458 mulcn2 11477 reccn2ap 11478 cn1lem 11479 climcvg1nlem 11514 fsumparts 11635 arisum2 11664 geosergap 11671 geo2sum2 11680 geoisum1c 11685 cvgratnnlemrate 11695 sinval 11867 sinf 11869 tanval2ap 11878 tanval3ap 11879 sinneg 11891 efival 11897 cos12dec 11933 pythagtriplem1 12434 pythagtriplem14 12446 pythagtriplem16 12448 pythagtriplem17 12449 dvdsprmpweqle 12506 4sqlem5 12551 mul4sqlem 12562 4sqlem17 12576 addcncntoplem 14797 mulcncflem 14843 cnopnap 14847 limcimolemlt 14900 limcimo 14901 cnplimclemle 14904 limccnp2lem 14912 dvlemap 14916 dvconst 14930 dvid 14931 dvconstre 14932 dvidre 14933 dvconstss 14934 dvcnp2cntop 14935 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 dvrecap 14949 dveflem 14962 dvef 14963 sin0pilem1 15017 ptolemy 15060 tangtx 15074 cosq34lt1 15086 lgsdirprm 15275 gausslemma2dlem1a 15299 qdencn 15671 trirec0 15688 apdifflemf 15690 apdifflemr 15691 apdiff 15692 |
| Copyright terms: Public domain | W3C validator |