Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subcld | Unicode version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | |
pncand.2 |
Ref | Expression |
---|---|
subcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 | |
2 | pncand.2 | . 2 | |
3 | subcl 8097 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 (class class class)co 5842 cc 7751 cmin 8069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 |
This theorem is referenced by: pnpncand 8273 kcnktkm1cn 8281 muleqadd 8565 peano2zm 9229 peano5uzti 9299 modqmuladdnn0 10303 modsumfzodifsn 10331 hashfz 10734 hashfzo 10735 shftfvalg 10760 ovshftex 10761 shftfibg 10762 shftfval 10763 shftdm 10764 shftfib 10765 shftval 10767 2shfti 10773 crre 10799 remim 10802 remullem 10813 resqrexlemover 10952 resqrexlemcalc1 10956 abssubne0 11033 abs3lem 11053 caubnd2 11059 maxabslemlub 11149 maxabslemval 11150 maxcl 11152 minabs 11177 bdtrilem 11180 bdtri 11181 climuni 11234 mulcn2 11253 reccn2ap 11254 cn1lem 11255 climcvg1nlem 11290 fsumparts 11411 arisum2 11440 geosergap 11447 geo2sum2 11456 geoisum1c 11461 cvgratnnlemrate 11471 sinval 11643 sinf 11645 tanval2ap 11654 tanval3ap 11655 sinneg 11667 efival 11673 cos12dec 11708 pythagtriplem1 12197 pythagtriplem14 12209 pythagtriplem16 12211 pythagtriplem17 12212 dvdsprmpweqle 12268 4sqlem5 12312 mul4sqlem 12323 addcncntoplem 13191 mulcncflem 13230 cnopnap 13234 limcimolemlt 13273 limcimo 13274 cnplimclemle 13277 limccnp2lem 13285 dvlemap 13289 dvconst 13301 dvid 13302 dvcnp2cntop 13303 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 dvcjbr 13312 dvrecap 13317 dveflem 13327 dvef 13328 sin0pilem1 13342 ptolemy 13385 tangtx 13399 cosq34lt1 13411 lgsdirprm 13575 qdencn 13906 trirec0 13923 apdifflemf 13925 apdifflemr 13926 apdiff 13927 |
Copyright terms: Public domain | W3C validator |