| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| subcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | subcl 8227 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7973 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-sub 8201 |
| This theorem is referenced by: pnpncand 8403 kcnktkm1cn 8411 muleqadd 8697 ofnegsub 8991 peano2zm 9366 peano5uzti 9436 modqmuladdnn0 10462 modsumfzodifsn 10490 hashfz 10915 hashfzo 10916 shftfvalg 10985 ovshftex 10986 shftfibg 10987 shftfval 10988 shftdm 10989 shftfib 10990 shftval 10992 2shfti 10998 crre 11024 remim 11027 remullem 11038 resqrexlemover 11177 resqrexlemcalc1 11181 abssubne0 11258 abs3lem 11278 caubnd2 11284 maxabslemlub 11374 maxabslemval 11375 maxcl 11377 minabs 11403 bdtrilem 11406 bdtri 11407 climuni 11460 mulcn2 11479 reccn2ap 11480 cn1lem 11481 climcvg1nlem 11516 fsumparts 11637 arisum2 11666 geosergap 11673 geo2sum2 11682 geoisum1c 11687 cvgratnnlemrate 11697 sinval 11869 sinf 11871 tanval2ap 11880 tanval3ap 11881 sinneg 11893 efival 11899 cos12dec 11935 bitsinv1lem 12128 pythagtriplem1 12444 pythagtriplem14 12456 pythagtriplem16 12458 pythagtriplem17 12459 dvdsprmpweqle 12516 4sqlem5 12561 mul4sqlem 12572 4sqlem17 12586 addcncntoplem 14807 mulcncflem 14853 cnopnap 14857 limcimolemlt 14910 limcimo 14911 cnplimclemle 14914 limccnp2lem 14922 dvlemap 14926 dvconst 14940 dvid 14941 dvconstre 14942 dvidre 14943 dvconstss 14944 dvcnp2cntop 14945 dvaddxxbr 14947 dvmulxxbr 14948 dvcoapbr 14953 dvcjbr 14954 dvrecap 14959 dveflem 14972 dvef 14973 sin0pilem1 15027 ptolemy 15070 tangtx 15084 cosq34lt1 15096 lgsdirprm 15285 gausslemma2dlem1a 15309 qdencn 15681 trirec0 15698 apdifflemf 15700 apdifflemr 15701 apdiff 15702 |
| Copyright terms: Public domain | W3C validator |