| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | Unicode version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| pncand.2 |
|
| Ref | Expression |
|---|---|
| subcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | pncand.2 |
. 2
| |
| 3 | subcl 8273 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 |
| This theorem is referenced by: pnpncand 8449 kcnktkm1cn 8457 muleqadd 8743 ofnegsub 9037 peano2zm 9412 peano5uzti 9483 modqmuladdnn0 10515 modsumfzodifsn 10543 hashfz 10968 hashfzo 10969 ccatswrd 11126 shftfvalg 11162 ovshftex 11163 shftfibg 11164 shftfval 11165 shftdm 11166 shftfib 11167 shftval 11169 2shfti 11175 crre 11201 remim 11204 remullem 11215 resqrexlemover 11354 resqrexlemcalc1 11358 abssubne0 11435 abs3lem 11455 caubnd2 11461 maxabslemlub 11551 maxabslemval 11552 maxcl 11554 minabs 11580 bdtrilem 11583 bdtri 11584 climuni 11637 mulcn2 11656 reccn2ap 11657 cn1lem 11658 climcvg1nlem 11693 fsumparts 11814 arisum2 11843 geosergap 11850 geo2sum2 11859 geoisum1c 11864 cvgratnnlemrate 11874 sinval 12046 sinf 12048 tanval2ap 12057 tanval3ap 12058 sinneg 12070 efival 12076 cos12dec 12112 bitsinv1lem 12305 pythagtriplem1 12621 pythagtriplem14 12633 pythagtriplem16 12635 pythagtriplem17 12636 dvdsprmpweqle 12693 4sqlem5 12738 mul4sqlem 12749 4sqlem17 12763 addcncntoplem 15066 mulcncflem 15112 cnopnap 15116 limcimolemlt 15169 limcimo 15170 cnplimclemle 15173 limccnp2lem 15181 dvlemap 15185 dvconst 15199 dvid 15200 dvconstre 15201 dvidre 15202 dvconstss 15203 dvcnp2cntop 15204 dvaddxxbr 15206 dvmulxxbr 15207 dvcoapbr 15212 dvcjbr 15213 dvrecap 15218 dveflem 15231 dvef 15232 sin0pilem1 15286 ptolemy 15329 tangtx 15343 cosq34lt1 15355 lgsdirprm 15544 gausslemma2dlem1a 15568 qdencn 16003 trirec0 16020 apdifflemf 16022 apdifflemr 16023 apdiff 16024 |
| Copyright terms: Public domain | W3C validator |