![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcld | Unicode version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
pncand.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
subcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pncand.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | subcl 8218 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 |
This theorem is referenced by: pnpncand 8394 kcnktkm1cn 8402 muleqadd 8687 ofnegsub 8981 peano2zm 9355 peano5uzti 9425 modqmuladdnn0 10439 modsumfzodifsn 10467 hashfz 10892 hashfzo 10893 shftfvalg 10962 ovshftex 10963 shftfibg 10964 shftfval 10965 shftdm 10966 shftfib 10967 shftval 10969 2shfti 10975 crre 11001 remim 11004 remullem 11015 resqrexlemover 11154 resqrexlemcalc1 11158 abssubne0 11235 abs3lem 11255 caubnd2 11261 maxabslemlub 11351 maxabslemval 11352 maxcl 11354 minabs 11379 bdtrilem 11382 bdtri 11383 climuni 11436 mulcn2 11455 reccn2ap 11456 cn1lem 11457 climcvg1nlem 11492 fsumparts 11613 arisum2 11642 geosergap 11649 geo2sum2 11658 geoisum1c 11663 cvgratnnlemrate 11673 sinval 11845 sinf 11847 tanval2ap 11856 tanval3ap 11857 sinneg 11869 efival 11875 cos12dec 11911 pythagtriplem1 12403 pythagtriplem14 12415 pythagtriplem16 12417 pythagtriplem17 12418 dvdsprmpweqle 12475 4sqlem5 12520 mul4sqlem 12531 4sqlem17 12545 addcncntoplem 14719 mulcncflem 14761 cnopnap 14765 limcimolemlt 14818 limcimo 14819 cnplimclemle 14822 limccnp2lem 14830 dvlemap 14834 dvconst 14846 dvid 14847 dvcnp2cntop 14848 dvaddxxbr 14850 dvmulxxbr 14851 dvcoapbr 14856 dvcjbr 14857 dvrecap 14862 dveflem 14872 dvef 14873 sin0pilem1 14916 ptolemy 14959 tangtx 14973 cosq34lt1 14985 lgsdirprm 15150 gausslemma2dlem1a 15174 qdencn 15517 trirec0 15534 apdifflemf 15536 apdifflemr 15537 apdiff 15538 |
Copyright terms: Public domain | W3C validator |