ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopn2 Unicode version

Theorem restopn2 13686
Description: If  A is open, then  B is open in  A iff it is an open subset of  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 3838 . . . . 5  |-  ( B  e.  ( Jt  A )  ->  B  C_  U. ( Jt  A ) )
2 elssuni 3838 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
3 eqid 2177 . . . . . . . 8  |-  U. J  =  U. J
43restuni 13675 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
52, 4sylan2 286 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  =  U. ( Jt  A ) )
65sseq2d 3186 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  C_  A  <->  B 
C_  U. ( Jt  A ) ) )
71, 6imbitrrid 156 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  ->  B  C_  A ) )
87pm4.71rd 394 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
9 simpll 527 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  J  e.  Top )
10 simplr 528 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  e.  J )
11 ssidd 3177 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  C_  A
)
12 simpr 110 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  B  C_  A
)
13 restopnb 13684 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  ( A  e.  J  /\  A  C_  A  /\  B  C_  A
) )  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
149, 10, 10, 11, 12, 13syl23anc 1245 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
1514pm5.32da 452 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( B  C_  A  /\  B  e.  J
)  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
168, 15bitr4d 191 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  J ) ) )
17 ancom 266 . 2  |-  ( ( B  C_  A  /\  B  e.  J )  <->  ( B  e.  J  /\  B  C_  A ) )
1816, 17bitrdi 196 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    C_ wss 3130   U.cuni 3810  (class class class)co 5875   ↾t crest 12688   Topctop 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-rest 12690  df-topgen 12709  df-top 13501  df-topon 13514  df-bases 13546
This theorem is referenced by:  restdis  13687
  Copyright terms: Public domain W3C validator