ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopn2 Unicode version

Theorem restopn2 14851
Description: If  A is open, then  B is open in  A iff it is an open subset of  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 3915 . . . . 5  |-  ( B  e.  ( Jt  A )  ->  B  C_  U. ( Jt  A ) )
2 elssuni 3915 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
3 eqid 2229 . . . . . . . 8  |-  U. J  =  U. J
43restuni 14840 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
52, 4sylan2 286 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  =  U. ( Jt  A ) )
65sseq2d 3254 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  C_  A  <->  B 
C_  U. ( Jt  A ) ) )
71, 6imbitrrid 156 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  ->  B  C_  A ) )
87pm4.71rd 394 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
9 simpll 527 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  J  e.  Top )
10 simplr 528 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  e.  J )
11 ssidd 3245 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  C_  A
)
12 simpr 110 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  B  C_  A
)
13 restopnb 14849 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  ( A  e.  J  /\  A  C_  A  /\  B  C_  A
) )  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
149, 10, 10, 11, 12, 13syl23anc 1278 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
1514pm5.32da 452 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( B  C_  A  /\  B  e.  J
)  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
168, 15bitr4d 191 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  J ) ) )
17 ancom 266 . 2  |-  ( ( B  C_  A  /\  B  e.  J )  <->  ( B  e.  J  /\  B  C_  A ) )
1816, 17bitrdi 196 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   U.cuni 3887  (class class class)co 6000   ↾t crest 13267   Topctop 14665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-rest 13269  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711
This theorem is referenced by:  restdis  14852
  Copyright terms: Public domain W3C validator