ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopn2 Unicode version

Theorem restopn2 14328
Description: If  A is open, then  B is open in  A iff it is an open subset of  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 3863 . . . . 5  |-  ( B  e.  ( Jt  A )  ->  B  C_  U. ( Jt  A ) )
2 elssuni 3863 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
3 eqid 2193 . . . . . . . 8  |-  U. J  =  U. J
43restuni 14317 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
52, 4sylan2 286 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  =  U. ( Jt  A ) )
65sseq2d 3209 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  C_  A  <->  B 
C_  U. ( Jt  A ) ) )
71, 6imbitrrid 156 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  ->  B  C_  A ) )
87pm4.71rd 394 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
9 simpll 527 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  J  e.  Top )
10 simplr 528 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  e.  J )
11 ssidd 3200 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  C_  A
)
12 simpr 110 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  B  C_  A
)
13 restopnb 14326 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  ( A  e.  J  /\  A  C_  A  /\  B  C_  A
) )  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
149, 10, 10, 11, 12, 13syl23anc 1256 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
1514pm5.32da 452 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( B  C_  A  /\  B  e.  J
)  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
168, 15bitr4d 191 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  J ) ) )
17 ancom 266 . 2  |-  ( ( B  C_  A  /\  B  e.  J )  <->  ( B  e.  J  /\  B  C_  A ) )
1816, 17bitrdi 196 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    C_ wss 3153   U.cuni 3835  (class class class)co 5910   ↾t crest 12840   Topctop 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-rest 12842  df-topgen 12861  df-top 14143  df-topon 14156  df-bases 14188
This theorem is referenced by:  restdis  14329
  Copyright terms: Public domain W3C validator