ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stoig Unicode version

Theorem stoig 12124
Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
restuni.1  |-  X  = 
U. J
Assertion
Ref Expression
stoig  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)

Proof of Theorem stoig
StepHypRef Expression
1 restuni.1 . . . 4  |-  X  = 
U. J
21toptopon 11967 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 resttopon 12122 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
42, 3sylanb 280 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
5 eqid 2100 . . 3  |-  { <. (
Base `  ndx ) ,  A >. ,  <. (TopSet ` 
ndx ) ,  ( Jt  A ) >. }  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }
65eltpsg 11989 . 2  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  { <. (
Base `  ndx ) ,  A >. ,  <. (TopSet ` 
ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)
74, 6syl 14 1  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448    C_ wss 3021   {cpr 3475   <.cop 3477   U.cuni 3683   ` cfv 5059  (class class class)co 5706   ndxcnx 11738   Basecbs 11741  TopSetcts 11809   ↾t crest 11902   Topctop 11946  TopOnctopon 11959   TopSpctps 11979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-pre-ltirr 7607  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-ltxr 7677  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-5 8640  df-6 8641  df-7 8642  df-8 8643  df-9 8644  df-ndx 11744  df-slot 11745  df-base 11747  df-tset 11822  df-rest 11904  df-topn 11905  df-topgen 11923  df-top 11947  df-topon 11960  df-topsp 11980  df-bases 11992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator