ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stoig Unicode version

Theorem stoig 12813
Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
restuni.1  |-  X  = 
U. J
Assertion
Ref Expression
stoig  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)

Proof of Theorem stoig
StepHypRef Expression
1 restuni.1 . . . 4  |-  X  = 
U. J
21toptopon 12656 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 resttopon 12811 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
42, 3sylanb 282 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( Jt  A )  e.  (TopOn `  A ) )
5 eqid 2165 . . 3  |-  { <. (
Base `  ndx ) ,  A >. ,  <. (TopSet ` 
ndx ) ,  ( Jt  A ) >. }  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }
65eltpsg 12678 . 2  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  { <. (
Base `  ndx ) ,  A >. ,  <. (TopSet ` 
ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)
74, 6syl 14 1  |-  ( ( J  e.  Top  /\  A  C_  X )  ->  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  ( Jt  A ) >. }  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   {cpr 3577   <.cop 3579   U.cuni 3789   ` cfv 5188  (class class class)co 5842   ndxcnx 12391   Basecbs 12394  TopSetcts 12463   ↾t crest 12556   Topctop 12635  TopOnctopon 12648   TopSpctps 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-ndx 12397  df-slot 12398  df-base 12400  df-tset 12476  df-rest 12558  df-topn 12559  df-topgen 12577  df-top 12636  df-topon 12649  df-topsp 12669  df-bases 12681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator