| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | Unicode version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8093 |
. . 3
| |
| 2 | recn 8093 |
. . 3
| |
| 3 | negsub 8355 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | renegcl 8368 |
. . 3
| |
| 6 | readdcl 8086 |
. . 3
| |
| 7 | 5, 6 | sylan2 286 |
. 2
|
| 8 | 4, 7 | eqeltrrd 2285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: peano2rem 8374 resubcld 8488 posdif 8563 lt2sub 8568 le2sub 8569 cju 9069 elz2 9479 difrp 9849 iooshf 10109 iccshftl 10153 lincmb01cmp 10160 uzsubsubfz 10204 difelfzle 10291 fzonmapblen 10348 eluzgtdifelfzo 10363 subfzo0 10408 modfzo0difsn 10577 expubnd 10778 absdiflt 11518 absdifle 11519 elicc4abs 11520 abssubge0 11528 abs2difabs 11534 maxabsle 11630 resin4p 12144 recos4p 12145 cos01bnd 12184 cos01gt0 12189 pythagtriplem12 12713 pythagtriplem14 12715 pythagtriplem16 12717 fldivp1 12786 bl2ioo 15137 ioo2bl 15138 ioo2blex 15139 blssioo 15140 dich0 15239 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 sinq12gt0 15417 cosq14gt0 15419 tangtx 15425 relogdiv 15457 logdivlti 15468 gausslemma2dlem1a 15650 redc0 16198 reap0 16199 |
| Copyright terms: Public domain | W3C validator |