| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | Unicode version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8058 |
. . 3
| |
| 2 | recn 8058 |
. . 3
| |
| 3 | negsub 8320 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | renegcl 8333 |
. . 3
| |
| 6 | readdcl 8051 |
. . 3
| |
| 7 | 5, 6 | sylan2 286 |
. 2
|
| 8 | 4, 7 | eqeltrrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: peano2rem 8339 resubcld 8453 posdif 8528 lt2sub 8533 le2sub 8534 cju 9034 elz2 9444 difrp 9814 iooshf 10074 iccshftl 10118 lincmb01cmp 10125 uzsubsubfz 10169 difelfzle 10256 fzonmapblen 10311 eluzgtdifelfzo 10326 subfzo0 10371 modfzo0difsn 10540 expubnd 10741 absdiflt 11403 absdifle 11404 elicc4abs 11405 abssubge0 11413 abs2difabs 11419 maxabsle 11515 resin4p 12029 recos4p 12030 cos01bnd 12069 cos01gt0 12074 pythagtriplem12 12598 pythagtriplem14 12600 pythagtriplem16 12602 fldivp1 12671 bl2ioo 15022 ioo2bl 15023 ioo2blex 15024 blssioo 15025 dich0 15124 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 sinq12gt0 15302 cosq14gt0 15304 tangtx 15310 relogdiv 15342 logdivlti 15353 gausslemma2dlem1a 15535 redc0 15996 reap0 15997 |
| Copyright terms: Public domain | W3C validator |