| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | Unicode version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8060 |
. . 3
| |
| 2 | recn 8060 |
. . 3
| |
| 3 | negsub 8322 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | renegcl 8335 |
. . 3
| |
| 6 | readdcl 8053 |
. . 3
| |
| 7 | 5, 6 | sylan2 286 |
. 2
|
| 8 | 4, 7 | eqeltrrd 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: peano2rem 8341 resubcld 8455 posdif 8530 lt2sub 8535 le2sub 8536 cju 9036 elz2 9446 difrp 9816 iooshf 10076 iccshftl 10120 lincmb01cmp 10127 uzsubsubfz 10171 difelfzle 10258 fzonmapblen 10313 eluzgtdifelfzo 10328 subfzo0 10373 modfzo0difsn 10542 expubnd 10743 absdiflt 11436 absdifle 11437 elicc4abs 11438 abssubge0 11446 abs2difabs 11452 maxabsle 11548 resin4p 12062 recos4p 12063 cos01bnd 12102 cos01gt0 12107 pythagtriplem12 12631 pythagtriplem14 12633 pythagtriplem16 12635 fldivp1 12704 bl2ioo 15055 ioo2bl 15056 ioo2blex 15057 blssioo 15058 dich0 15157 sincosq1sgn 15331 sincosq2sgn 15332 sincosq3sgn 15333 sincosq4sgn 15334 sinq12gt0 15335 cosq14gt0 15337 tangtx 15343 relogdiv 15375 logdivlti 15386 gausslemma2dlem1a 15568 redc0 16033 reap0 16034 |
| Copyright terms: Public domain | W3C validator |