Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resubcl | Unicode version |
Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
resubcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7907 | . . 3 | |
2 | recn 7907 | . . 3 | |
3 | negsub 8167 | . . 3 | |
4 | 1, 2, 3 | syl2an 287 | . 2 |
5 | renegcl 8180 | . . 3 | |
6 | readdcl 7900 | . . 3 | |
7 | 5, 6 | sylan2 284 | . 2 |
8 | 4, 7 | eqeltrrd 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cr 7773 caddc 7777 cmin 8090 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: peano2rem 8186 resubcld 8300 posdif 8374 lt2sub 8379 le2sub 8380 cju 8877 elz2 9283 difrp 9649 iooshf 9909 iccshftl 9953 lincmb01cmp 9960 uzsubsubfz 10003 difelfzle 10090 fzonmapblen 10143 eluzgtdifelfzo 10153 subfzo0 10198 modfzo0difsn 10351 expubnd 10533 absdiflt 11056 absdifle 11057 elicc4abs 11058 abssubge0 11066 abs2difabs 11072 maxabsle 11168 resin4p 11681 recos4p 11682 cos01bnd 11721 cos01gt0 11725 pythagtriplem12 12229 pythagtriplem14 12231 pythagtriplem16 12233 fldivp1 12300 bl2ioo 13336 ioo2bl 13337 ioo2blex 13338 blssioo 13339 sincosq1sgn 13541 sincosq2sgn 13542 sincosq3sgn 13543 sincosq4sgn 13544 sinq12gt0 13545 cosq14gt0 13547 tangtx 13553 relogdiv 13585 logdivlti 13596 redc0 14089 reap0 14090 |
Copyright terms: Public domain | W3C validator |