ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz Unicode version

Theorem exbtwnz 9983
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
exbtwnz.a  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
exbtwnz  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem exbtwnz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
2 simplrl 509 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  ZZ )
32zred 9131 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  RR )
4 exbtwnz.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
54ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  e.  RR )
6 simplrr 510 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  ZZ )
76zred 9131 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  RR )
8 1red 7749 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  1  e.  RR )
97, 8readdcld 7763 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  +  1 )  e.  RR )
10 simprll 511 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  A )
11 simprrr 514 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( y  +  1 ) )
123, 5, 9, 10, 11lelttrd 7855 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <  ( y  +  1 ) )
13 zleltp1 9067 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  x  <  ( y  +  1 ) ) )
142, 6, 13syl2anc 408 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  <_  y  <->  x  <  ( y  +  1 ) ) )
1512, 14mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  y )
163, 8readdcld 7763 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  +  1 )  e.  RR )
17 simprrl 513 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  A )
18 simprlr 512 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( x  +  1 ) )
197, 5, 16, 17, 18lelttrd 7855 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <  ( x  +  1 ) )
20 zleltp1 9067 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  <_  x  <->  y  <  ( x  + 
1 ) ) )
216, 2, 20syl2anc 408 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  <_  x  <->  y  <  ( x  +  1 ) ) )
2219, 21mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  x )
233, 7letri3d 7847 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  =  y  <->  ( x  <_  y  /\  y  <_  x ) ) )
2415, 22, 23mpbir2and 913 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  =  y )
2524ex 114 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  <_  A  /\  A  <  ( x  +  1 ) )  /\  (
y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
2625ralrimivva 2491 . . 3  |-  ( ph  ->  A. x  e.  ZZ  A. y  e.  ZZ  (
( ( x  <_  A  /\  A  <  (
x  +  1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y )
)
27 breq1 3902 . . . . 5  |-  ( x  =  y  ->  (
x  <_  A  <->  y  <_  A ) )
28 oveq1 5749 . . . . . 6  |-  ( x  =  y  ->  (
x  +  1 )  =  ( y  +  1 ) )
2928breq2d 3911 . . . . 5  |-  ( x  =  y  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( y  +  1 ) ) )
3027, 29anbi12d 464 . . . 4  |-  ( x  =  y  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )
3130rmo4 2850 . . 3  |-  ( E* x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( ( x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
3226, 31sylibr 133 . 2  |-  ( ph  ->  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
33 reu5 2620 . 2  |-  ( E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  ( E. x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
341, 32, 33sylanbrc 413 1  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1465   A.wral 2393   E.wrex 2394   E!wreu 2395   E*wrmo 2396   class class class wbr 3899  (class class class)co 5742   RRcr 7587   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769   ZZcz 9012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8685  df-n0 8936  df-z 9013
This theorem is referenced by:  qbtwnz  9984  apbtwnz  10002
  Copyright terms: Public domain W3C validator