ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz Unicode version

Theorem exbtwnz 9869
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
exbtwnz.a  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
exbtwnz  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem exbtwnz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
2 simplrl 505 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  ZZ )
32zred 9025 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  RR )
4 exbtwnz.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
54ad2antrr 475 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  e.  RR )
6 simplrr 506 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  ZZ )
76zred 9025 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  RR )
8 1red 7653 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  1  e.  RR )
97, 8readdcld 7667 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  +  1 )  e.  RR )
10 simprll 507 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  A )
11 simprrr 510 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( y  +  1 ) )
123, 5, 9, 10, 11lelttrd 7758 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <  ( y  +  1 ) )
13 zleltp1 8961 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  x  <  ( y  +  1 ) ) )
142, 6, 13syl2anc 406 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  <_  y  <->  x  <  ( y  +  1 ) ) )
1512, 14mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  y )
163, 8readdcld 7667 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  +  1 )  e.  RR )
17 simprrl 509 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  A )
18 simprlr 508 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( x  +  1 ) )
197, 5, 16, 17, 18lelttrd 7758 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <  ( x  +  1 ) )
20 zleltp1 8961 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  <_  x  <->  y  <  ( x  + 
1 ) ) )
216, 2, 20syl2anc 406 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  <_  x  <->  y  <  ( x  +  1 ) ) )
2219, 21mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  x )
233, 7letri3d 7750 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  =  y  <->  ( x  <_  y  /\  y  <_  x ) ) )
2415, 22, 23mpbir2and 896 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  =  y )
2524ex 114 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  <_  A  /\  A  <  ( x  +  1 ) )  /\  (
y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
2625ralrimivva 2473 . . 3  |-  ( ph  ->  A. x  e.  ZZ  A. y  e.  ZZ  (
( ( x  <_  A  /\  A  <  (
x  +  1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y )
)
27 breq1 3878 . . . . 5  |-  ( x  =  y  ->  (
x  <_  A  <->  y  <_  A ) )
28 oveq1 5713 . . . . . 6  |-  ( x  =  y  ->  (
x  +  1 )  =  ( y  +  1 ) )
2928breq2d 3887 . . . . 5  |-  ( x  =  y  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( y  +  1 ) ) )
3027, 29anbi12d 460 . . . 4  |-  ( x  =  y  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )
3130rmo4 2830 . . 3  |-  ( E* x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( ( x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
3226, 31sylibr 133 . 2  |-  ( ph  ->  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
33 reu5 2601 . 2  |-  ( E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  ( E. x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
341, 32, 33sylanbrc 411 1  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1448   A.wral 2375   E.wrex 2376   E!wreu 2377   E*wrmo 2378   class class class wbr 3875  (class class class)co 5706   RRcr 7499   1c1 7501    + caddc 7503    < clt 7672    <_ cle 7673   ZZcz 8906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907
This theorem is referenced by:  qbtwnz  9870  apbtwnz  9888
  Copyright terms: Public domain W3C validator