ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnz Unicode version

Theorem exbtwnz 10237
Description: If a real number is between an integer and its successor, there is a unique greatest integer less than or equal to the real number. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnz.ex  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
exbtwnz.a  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
exbtwnz  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable groups:    x, A    ph, x

Proof of Theorem exbtwnz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 exbtwnz.ex . 2  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
2 simplrl 535 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  ZZ )
32zred 9364 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  e.  RR )
4 exbtwnz.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
54ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  e.  RR )
6 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  ZZ )
76zred 9364 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  e.  RR )
8 1red 7963 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  1  e.  RR )
97, 8readdcld 7977 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  +  1 )  e.  RR )
10 simprll 537 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  A )
11 simprrr 540 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( y  +  1 ) )
123, 5, 9, 10, 11lelttrd 8072 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <  ( y  +  1 ) )
13 zleltp1 9297 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  x  <  ( y  +  1 ) ) )
142, 6, 13syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  <_  y  <->  x  <  ( y  +  1 ) ) )
1512, 14mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  <_  y )
163, 8readdcld 7977 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  +  1 )  e.  RR )
17 simprrl 539 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  A )
18 simprlr 538 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  A  <  ( x  +  1 ) )
197, 5, 16, 17, 18lelttrd 8072 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <  ( x  +  1 ) )
20 zleltp1 9297 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  <_  x  <->  y  <  ( x  + 
1 ) ) )
216, 2, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
y  <_  x  <->  y  <  ( x  +  1 ) ) )
2219, 21mpbird 167 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  y  <_  x )
233, 7letri3d 8063 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  (
x  =  y  <->  ( x  <_  y  /\  y  <_  x ) ) )
2415, 22, 23mpbir2and 944 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  /\  ( (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )  ->  x  =  y )
2524ex 115 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  <_  A  /\  A  <  ( x  +  1 ) )  /\  (
y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
2625ralrimivva 2559 . . 3  |-  ( ph  ->  A. x  e.  ZZ  A. y  e.  ZZ  (
( ( x  <_  A  /\  A  <  (
x  +  1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y )
)
27 breq1 4003 . . . . 5  |-  ( x  =  y  ->  (
x  <_  A  <->  y  <_  A ) )
28 oveq1 5876 . . . . . 6  |-  ( x  =  y  ->  (
x  +  1 )  =  ( y  +  1 ) )
2928breq2d 4012 . . . . 5  |-  ( x  =  y  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( y  +  1 ) ) )
3027, 29anbi12d 473 . . . 4  |-  ( x  =  y  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( y  <_  A  /\  A  <  ( y  +  1 ) ) ) )
3130rmo4 2930 . . 3  |-  ( E* x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  A. x  e.  ZZ  A. y  e.  ZZ  ( ( ( x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  ( y  <_  A  /\  A  <  ( y  +  1 ) ) )  ->  x  =  y ) )
3226, 31sylibr 134 . 2  |-  ( ph  ->  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
33 reu5 2689 . 2  |-  ( E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  <->  ( E. x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  /\  E* x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
341, 32, 33sylanbrc 417 1  |-  ( ph  ->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   A.wral 2455   E.wrex 2456   E!wreu 2457   E*wrmo 2458   class class class wbr 4000  (class class class)co 5869   RRcr 7801   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by:  qbtwnz  10238  apbtwnz  10260
  Copyright terms: Public domain W3C validator