ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu Unicode version

Theorem pw2dvdseu 12336
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvdseu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 12334 . 2  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  N  e.  NN )
3 simplrl 535 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  NN0 )
4 simplrr 536 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  NN0 )
5 simprll 537 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ m )  ||  N
)
6 simprrr 540 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( x  + 
1 ) )  ||  N )
72, 3, 4, 5, 6pw2dvdseulemle 12335 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  <_  x
)
8 simprrl 539 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ x )  ||  N
)
9 simprlr 538 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )
102, 4, 3, 8, 9pw2dvdseulemle 12335 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  <_  m
)
113nn0red 9303 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  RR )
124nn0red 9303 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  RR )
1311, 12letri3d 8142 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( m  =  x  <->  ( m  <_  x  /\  x  <_  m
) ) )
147, 10, 13mpbir2and 946 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  =  x )
1514ex 115 . . . 4  |-  ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  ->  ( (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  /\  ( (
2 ^ x ) 
||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
1615ralrimivva 2579 . . 3  |-  ( N  e.  NN  ->  A. m  e.  NN0  A. x  e. 
NN0  ( ( ( ( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) )  ->  m  =  x )
)
17 oveq2 5930 . . . . . 6  |-  ( m  =  x  ->  (
2 ^ m )  =  ( 2 ^ x ) )
1817breq1d 4043 . . . . 5  |-  ( m  =  x  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ x )  ||  N ) )
19 oveq1 5929 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2019oveq2d 5938 . . . . . . 7  |-  ( m  =  x  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( x  +  1 ) ) )
2120breq1d 4043 . . . . . 6  |-  ( m  =  x  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( x  + 
1 ) )  ||  N ) )
2221notbid 668 . . . . 5  |-  ( m  =  x  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( x  +  1 ) ) 
||  N ) )
2318, 22anbi12d 473 . . . 4  |-  ( m  =  x  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )
2423rmo4 2957 . . 3  |-  ( E* m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <->  A. m  e.  NN0  A. x  e.  NN0  (
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  (
( 2 ^ x
)  ||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
2516, 24sylibr 134 . 2  |-  ( N  e.  NN  ->  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
26 reu5 2714 . 2  |-  ( E! m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <-> 
( E. m  e. 
NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) ) )
271, 25, 26sylanbrc 417 1  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477   E*wrmo 2478   class class class wbr 4033  (class class class)co 5922   1c1 7880    + caddc 7882    <_ cle 8062   NNcn 8990   2c2 9041   NN0cn0 9249   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  oddpwdclemxy  12337  oddpwdclemdvds  12338  oddpwdclemndvds  12339  oddpwdclemodd  12340  oddpwdclemdc  12341  oddpwdc  12342
  Copyright terms: Public domain W3C validator