ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu Unicode version

Theorem pw2dvdseu 12575
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvdseu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 12573 . 2  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  N  e.  NN )
3 simplrl 535 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  NN0 )
4 simplrr 536 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  NN0 )
5 simprll 537 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ m )  ||  N
)
6 simprrr 540 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( x  + 
1 ) )  ||  N )
72, 3, 4, 5, 6pw2dvdseulemle 12574 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  <_  x
)
8 simprrl 539 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( 2 ^ x )  ||  N
)
9 simprlr 538 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )
102, 4, 3, 8, 9pw2dvdseulemle 12574 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  <_  m
)
113nn0red 9379 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  e.  RR )
124nn0red 9379 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  x  e.  RR )
1311, 12letri3d 8218 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  ( m  =  x  <->  ( m  <_  x  /\  x  <_  m
) ) )
147, 10, 13mpbir2and 947 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  /\  ( (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )  ->  m  =  x )
1514ex 115 . . . 4  |-  ( ( N  e.  NN  /\  ( m  e.  NN0  /\  x  e.  NN0 )
)  ->  ( (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  /\  ( (
2 ^ x ) 
||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
1615ralrimivva 2589 . . 3  |-  ( N  e.  NN  ->  A. m  e.  NN0  A. x  e. 
NN0  ( ( ( ( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  /\  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) )  ->  m  =  x )
)
17 oveq2 5970 . . . . . 6  |-  ( m  =  x  ->  (
2 ^ m )  =  ( 2 ^ x ) )
1817breq1d 4064 . . . . 5  |-  ( m  =  x  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ x )  ||  N ) )
19 oveq1 5969 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  1 )  =  ( x  + 
1 ) )
2019oveq2d 5978 . . . . . . 7  |-  ( m  =  x  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( x  +  1 ) ) )
2120breq1d 4064 . . . . . 6  |-  ( m  =  x  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( x  + 
1 ) )  ||  N ) )
2221notbid 669 . . . . 5  |-  ( m  =  x  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( x  +  1 ) ) 
||  N ) )
2318, 22anbi12d 473 . . . 4  |-  ( m  =  x  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ x )  ||  N  /\  -.  ( 2 ^ ( x  + 
1 ) )  ||  N ) ) )
2423rmo4 2970 . . 3  |-  ( E* m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <->  A. m  e.  NN0  A. x  e.  NN0  (
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  (
( 2 ^ x
)  ||  N  /\  -.  ( 2 ^ (
x  +  1 ) )  ||  N ) )  ->  m  =  x ) )
2516, 24sylibr 134 . 2  |-  ( N  e.  NN  ->  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
26 reu5 2724 . 2  |-  ( E! m  e.  NN0  (
( 2 ^ m
)  ||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N )  <-> 
( E. m  e. 
NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  /\  E* m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) ) )
271, 25, 26sylanbrc 417 1  |-  ( N  e.  NN  ->  E! m  e.  NN0  ( ( 2 ^ m ) 
||  N  /\  -.  ( 2 ^ (
m  +  1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2177   A.wral 2485   E.wrex 2486   E!wreu 2487   E*wrmo 2488   class class class wbr 4054  (class class class)co 5962   1c1 7956    + caddc 7958    <_ cle 8138   NNcn 9066   2c2 9117   NN0cn0 9325   ^cexp 10715    || cdvds 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-dvds 12184
This theorem is referenced by:  oddpwdclemxy  12576  oddpwdclemdvds  12577  oddpwdclemndvds  12578  oddpwdclemodd  12579  oddpwdclemdc  12580  oddpwdc  12581
  Copyright terms: Public domain W3C validator