ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcl Unicode version

Theorem rpmulcl 9580
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpmulcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )

Proof of Theorem rpmulcl
StepHypRef Expression
1 rpre 9562 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpre 9562 . . 3  |-  ( B  e.  RR+  ->  B  e.  RR )
3 remulcl 7855 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR )
5 elrp 9557 . . 3  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
6 elrp 9557 . . 3  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
7 mulgt0 7947 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
85, 6, 7syl2anb 289 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  <  ( A  x.  B
) )
9 elrp 9557 . 2  |-  ( ( A  x.  B )  e.  RR+  <->  ( ( A  x.  B )  e.  RR  /\  0  < 
( A  x.  B
) ) )
104, 8, 9sylanbrc 414 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   class class class wbr 3965  (class class class)co 5821   RRcr 7726   0cc0 7727    x. cmul 7732    < clt 7907   RR+crp 9555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1re 7821  ax-addrcl 7824  ax-mulrcl 7826  ax-rnegex 7836  ax-pre-mulgt0 7844
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-pnf 7909  df-mnf 7910  df-ltxr 7912  df-rp 9556
This theorem is referenced by:  rpmulcld  9615  rpexpcl  10433  expcnvap0  11394  fprodrpcl  11503  cosordlem  13157  rprelogbmul  13259  taupi  13628
  Copyright terms: Public domain W3C validator