ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcl Unicode version

Theorem rpmulcl 9614
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpmulcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )

Proof of Theorem rpmulcl
StepHypRef Expression
1 rpre 9596 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpre 9596 . . 3  |-  ( B  e.  RR+  ->  B  e.  RR )
3 remulcl 7881 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR )
5 elrp 9591 . . 3  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
6 elrp 9591 . . 3  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
7 mulgt0 7973 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
85, 6, 7syl2anb 289 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  <  ( A  x.  B
) )
9 elrp 9591 . 2  |-  ( ( A  x.  B )  e.  RR+  <->  ( ( A  x.  B )  e.  RR  /\  0  < 
( A  x.  B
) ) )
104, 8, 9sylanbrc 414 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933   RR+crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-mulrcl 7852  ax-rnegex 7862  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-rp 9590
This theorem is referenced by:  rpmulcld  9649  rpexpcl  10474  expcnvap0  11443  fprodrpcl  11552  cosordlem  13410  rprelogbmul  13513  taupi  13949
  Copyright terms: Public domain W3C validator