ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcl Unicode version

Theorem rpmulcl 9676
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpmulcl  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )

Proof of Theorem rpmulcl
StepHypRef Expression
1 rpre 9658 . . 3  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpre 9658 . . 3  |-  ( B  e.  RR+  ->  B  e.  RR )
3 remulcl 7938 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR )
5 elrp 9653 . . 3  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
6 elrp 9653 . . 3  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
7 mulgt0 8030 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
85, 6, 7syl2anb 291 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  0  <  ( A  x.  B
) )
9 elrp 9653 . 2  |-  ( ( A  x.  B )  e.  RR+  <->  ( ( A  x.  B )  e.  RR  /\  0  < 
( A  x.  B
) ) )
104, 8, 9sylanbrc 417 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4003  (class class class)co 5874   RRcr 7809   0cc0 7810    x. cmul 7815    < clt 7990   RR+crp 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907  ax-mulrcl 7909  ax-rnegex 7919  ax-pre-mulgt0 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-rp 9652
This theorem is referenced by:  rpmulcld  9711  rpexpcl  10536  expcnvap0  11505  fprodrpcl  11614  cosordlem  14163  rprelogbmul  14266  taupi  14702
  Copyright terms: Public domain W3C validator