ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcld Unicode version

Theorem rpmulcld 9253
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
rpaddcld.1  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
rpmulcld  |-  ( ph  ->  ( A  x.  B
)  e.  RR+ )

Proof of Theorem rpmulcld
StepHypRef Expression
1 rpred.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 rpaddcld.1 . 2  |-  ( ph  ->  B  e.  RR+ )
3 rpmulcl 9221 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
41, 2, 3syl2anc 404 1  |-  ( ph  ->  ( A  x.  B
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1439  (class class class)co 5668    x. cmul 7418   RR+crp 9197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1re 7502  ax-addrcl 7505  ax-mulrcl 7507  ax-rnegex 7517  ax-pre-mulgt0 7525
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-xp 4460  df-pnf 7587  df-mnf 7588  df-ltxr 7590  df-rp 9198
This theorem is referenced by:  qbtwnrelemcalc  9730  cvg1nlemcxze  10478  cvg1nlemres  10481  resqrexlemnm  10514  resqrexlemcvg  10515  cvgratnnlembern  10980  cvgratnnlemrate  10987  cvgratnn  10988  eirraplem  11127
  Copyright terms: Public domain W3C validator