Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpmulcld | Unicode version |
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | |
rpaddcld.1 |
Ref | Expression |
---|---|
rpmulcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 | |
2 | rpaddcld.1 | . 2 | |
3 | rpmulcl 9647 | . 2 | |
4 | 1, 2, 3 | syl2anc 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 (class class class)co 5865 cmul 7791 crp 9622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-mulrcl 7885 ax-rnegex 7895 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-rp 9623 |
This theorem is referenced by: qbtwnrelemcalc 10224 cvg1nlemcxze 10957 cvg1nlemres 10960 resqrexlemnm 10993 resqrexlemcvg 10994 reccn2ap 11287 cvgratnnlembern 11497 cvgratnnlemrate 11504 cvgratnn 11505 eirraplem 11750 cosordlem 13839 rpmulcxp 13899 |
Copyright terms: Public domain | W3C validator |