ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgisid Unicode version

Theorem srgisid 13944
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
srgisid.1  |-  ( ph  ->  R  e. SRing )
srgisid.2  |-  ( ph  ->  Z  e.  B )
srgisid.3  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
Assertion
Ref Expression
srgisid  |-  ( ph  ->  Z  =  .0.  )
Distinct variable groups:    x, B    x, R    x,  .x.    x,  .0.    x, Z    ph, x

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
21ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  B  ( Z  .x.  x )  =  Z )
3 srgisid.1 . . . 4  |-  ( ph  ->  R  e. SRing )
4 srgz.b . . . . 5  |-  B  =  ( Base `  R
)
5 srgz.z . . . . 5  |-  .0.  =  ( 0g `  R )
64, 5srg0cl 13935 . . . 4  |-  ( R  e. SRing  ->  .0.  e.  B
)
7 oveq2 6008 . . . . . 6  |-  ( x  =  .0.  ->  ( Z  .x.  x )  =  ( Z  .x.  .0.  ) )
87eqeq1d 2238 . . . . 5  |-  ( x  =  .0.  ->  (
( Z  .x.  x
)  =  Z  <->  ( Z  .x.  .0.  )  =  Z ) )
98rspcv 2903 . . . 4  |-  (  .0. 
e.  B  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z ) )
103, 6, 93syl 17 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z
) )
112, 10mpd 13 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  Z )
12 srgisid.2 . . 3  |-  ( ph  ->  Z  e.  B )
13 srgz.t . . . 4  |-  .x.  =  ( .r `  R )
144, 13, 5srgrz 13942 . . 3  |-  ( ( R  e. SRing  /\  Z  e.  B )  ->  ( Z  .x.  .0.  )  =  .0.  )
153, 12, 14syl2anc 411 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  .0.  )
1611, 15eqtr3d 2264 1  |-  ( ph  ->  Z  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106   0gc0g 13284  SRingcsrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-cmn 13818  df-srg 13922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator