ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgisid Unicode version

Theorem srgisid 12962
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
srgisid.1  |-  ( ph  ->  R  e. SRing )
srgisid.2  |-  ( ph  ->  Z  e.  B )
srgisid.3  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
Assertion
Ref Expression
srgisid  |-  ( ph  ->  Z  =  .0.  )
Distinct variable groups:    x, B    x, R    x,  .x.    x,  .0.    x, Z    ph, x

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
21ralrimiva 2548 . . 3  |-  ( ph  ->  A. x  e.  B  ( Z  .x.  x )  =  Z )
3 srgisid.1 . . . 4  |-  ( ph  ->  R  e. SRing )
4 srgz.b . . . . 5  |-  B  =  ( Base `  R
)
5 srgz.z . . . . 5  |-  .0.  =  ( 0g `  R )
64, 5srg0cl 12953 . . . 4  |-  ( R  e. SRing  ->  .0.  e.  B
)
7 oveq2 5873 . . . . . 6  |-  ( x  =  .0.  ->  ( Z  .x.  x )  =  ( Z  .x.  .0.  ) )
87eqeq1d 2184 . . . . 5  |-  ( x  =  .0.  ->  (
( Z  .x.  x
)  =  Z  <->  ( Z  .x.  .0.  )  =  Z ) )
98rspcv 2835 . . . 4  |-  (  .0. 
e.  B  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z ) )
103, 6, 93syl 17 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z
) )
112, 10mpd 13 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  Z )
12 srgisid.2 . . 3  |-  ( ph  ->  Z  e.  B )
13 srgz.t . . . 4  |-  .x.  =  ( .r `  R )
144, 13, 5srgrz 12960 . . 3  |-  ( ( R  e. SRing  /\  Z  e.  B )  ->  ( Z  .x.  .0.  )  =  .0.  )
153, 12, 14syl2anc 411 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  .0.  )
1611, 15eqtr3d 2210 1  |-  ( ph  ->  Z  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   ` cfv 5208  (class class class)co 5865   Basecbs 12428   .rcmulr 12493   0gc0g 12626  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-cmn 12886  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator