ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgisid Unicode version

Theorem srgisid 13818
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
srgisid.1  |-  ( ph  ->  R  e. SRing )
srgisid.2  |-  ( ph  ->  Z  e.  B )
srgisid.3  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
Assertion
Ref Expression
srgisid  |-  ( ph  ->  Z  =  .0.  )
Distinct variable groups:    x, B    x, R    x,  .x.    x,  .0.    x, Z    ph, x

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
21ralrimiva 2580 . . 3  |-  ( ph  ->  A. x  e.  B  ( Z  .x.  x )  =  Z )
3 srgisid.1 . . . 4  |-  ( ph  ->  R  e. SRing )
4 srgz.b . . . . 5  |-  B  =  ( Base `  R
)
5 srgz.z . . . . 5  |-  .0.  =  ( 0g `  R )
64, 5srg0cl 13809 . . . 4  |-  ( R  e. SRing  ->  .0.  e.  B
)
7 oveq2 5964 . . . . . 6  |-  ( x  =  .0.  ->  ( Z  .x.  x )  =  ( Z  .x.  .0.  ) )
87eqeq1d 2215 . . . . 5  |-  ( x  =  .0.  ->  (
( Z  .x.  x
)  =  Z  <->  ( Z  .x.  .0.  )  =  Z ) )
98rspcv 2877 . . . 4  |-  (  .0. 
e.  B  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z ) )
103, 6, 93syl 17 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z
) )
112, 10mpd 13 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  Z )
12 srgisid.2 . . 3  |-  ( ph  ->  Z  e.  B )
13 srgz.t . . . 4  |-  .x.  =  ( .r `  R )
144, 13, 5srgrz 13816 . . 3  |-  ( ( R  e. SRing  /\  Z  e.  B )  ->  ( Z  .x.  .0.  )  =  .0.  )
153, 12, 14syl2anc 411 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  .0.  )
1611, 15eqtr3d 2241 1  |-  ( ph  ->  Z  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5279  (class class class)co 5956   Basecbs 12902   .rcmulr 12980   0gc0g 13158  SRingcsrg 13795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-cmn 13692  df-srg 13796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator