ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgisid GIF version

Theorem srgisid 12962
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
srgisid.1 (𝜑𝑅 ∈ SRing)
srgisid.2 (𝜑𝑍𝐵)
srgisid.3 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
Assertion
Ref Expression
srgisid (𝜑𝑍 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥, 0   𝑥,𝑍   𝜑,𝑥

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
21ralrimiva 2548 . . 3 (𝜑 → ∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍)
3 srgisid.1 . . . 4 (𝜑𝑅 ∈ SRing)
4 srgz.b . . . . 5 𝐵 = (Base‘𝑅)
5 srgz.z . . . . 5 0 = (0g𝑅)
64, 5srg0cl 12953 . . . 4 (𝑅 ∈ SRing → 0𝐵)
7 oveq2 5873 . . . . . 6 (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 ))
87eqeq1d 2184 . . . . 5 (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍))
98rspcv 2835 . . . 4 ( 0𝐵 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
103, 6, 93syl 17 . . 3 (𝜑 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
112, 10mpd 13 . 2 (𝜑 → (𝑍 · 0 ) = 𝑍)
12 srgisid.2 . . 3 (𝜑𝑍𝐵)
13 srgz.t . . . 4 · = (.r𝑅)
144, 13, 5srgrz 12960 . . 3 ((𝑅 ∈ SRing ∧ 𝑍𝐵) → (𝑍 · 0 ) = 0 )
153, 12, 14syl2anc 411 . 2 (𝜑 → (𝑍 · 0 ) = 0 )
1611, 15eqtr3d 2210 1 (𝜑𝑍 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wral 2453  cfv 5208  (class class class)co 5865  Basecbs 12428  .rcmulr 12493  0gc0g 12626  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-cmn 12886  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator