Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srgisid | GIF version |
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
srgz.b | ⊢ 𝐵 = (Base‘𝑅) |
srgz.t | ⊢ · = (.r‘𝑅) |
srgz.z | ⊢ 0 = (0g‘𝑅) |
srgisid.1 | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgisid.2 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
srgisid.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) |
Ref | Expression |
---|---|
srgisid | ⊢ (𝜑 → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgisid.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) | |
2 | 1 | ralrimiva 2548 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍) |
3 | srgisid.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgz.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | srgz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | srg0cl 12953 | . . . 4 ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) |
7 | oveq2 5873 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 )) | |
8 | 7 | eqeq1d 2184 | . . . . 5 ⊢ (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍)) |
9 | 8 | rspcv 2835 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
10 | 3, 6, 9 | 3syl 17 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍)) |
11 | 2, 10 | mpd 13 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 𝑍) |
12 | srgisid.2 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
13 | srgz.t | . . . 4 ⊢ · = (.r‘𝑅) | |
14 | 4, 13, 5 | srgrz 12960 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑍 ∈ 𝐵) → (𝑍 · 0 ) = 0 ) |
15 | 3, 12, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑍 · 0 ) = 0 ) |
16 | 11, 15 | eqtr3d 2210 | 1 ⊢ (𝜑 → 𝑍 = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 .rcmulr 12493 0gc0g 12626 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-cmn 12886 df-srg 12940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |