ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglz Unicode version

Theorem srglz 13168
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
srglz  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem srglz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7  |-  B  =  ( Base `  R
)
2 eqid 2177 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2177 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
4 srgz.t . . . . . . 7  |-  .x.  =  ( .r `  R )
5 srgz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5issrg 13148 . . . . . 6  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y ( +g  `  R
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  R ) ( x  .x.  z
) )  /\  (
( x ( +g  `  R ) y ) 
.x.  z )  =  ( ( x  .x.  z ) ( +g  `  R ) ( y 
.x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) ) )
76simp3bi 1014 . . . . 5  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
87r19.21bi 2565 . . . 4  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
98simprld 530 . . 3  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  (  .0.  .x.  x )  =  .0.  )
109ralrimiva 2550 . 2  |-  ( R  e. SRing  ->  A. x  e.  B  (  .0.  .x.  x )  =  .0.  )
11 oveq2 5883 . . . 4  |-  ( x  =  X  ->  (  .0.  .x.  x )  =  (  .0.  .x.  X
) )
1211eqeq1d 2186 . . 3  |-  ( x  =  X  ->  (
(  .0.  .x.  x
)  =  .0.  <->  (  .0.  .x. 
X )  =  .0.  ) )
1312rspcv 2838 . 2  |-  ( X  e.  B  ->  ( A. x  e.  B  (  .0.  .x.  x )  =  .0.  ->  (  .0.  .x. 
X )  =  .0.  ) )
1410, 13mpan9 281 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   .rcmulr 12537   0gc0g 12705   Mndcmnd 12817  CMndccmn 13088  mulGrpcmgp 13130  SRingcsrg 13146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-0g 12707  df-srg 13147
This theorem is referenced by:  srgmulgass  13172  srgrmhm  13177
  Copyright terms: Public domain W3C validator