ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srglz Unicode version

Theorem srglz 12961
Description: The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
srglz  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem srglz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7  |-  B  =  ( Base `  R
)
2 eqid 2175 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2175 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
4 srgz.t . . . . . . 7  |-  .x.  =  ( .r `  R )
5 srgz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5issrg 12941 . . . . . 6  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y ( +g  `  R
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  R ) ( x  .x.  z
) )  /\  (
( x ( +g  `  R ) y ) 
.x.  z )  =  ( ( x  .x.  z ) ( +g  `  R ) ( y 
.x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) ) )
76simp3bi 1014 . . . . 5  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
87r19.21bi 2563 . . . 4  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
98simprld 530 . . 3  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  (  .0.  .x.  x )  =  .0.  )
109ralrimiva 2548 . 2  |-  ( R  e. SRing  ->  A. x  e.  B  (  .0.  .x.  x )  =  .0.  )
11 oveq2 5873 . . . 4  |-  ( x  =  X  ->  (  .0.  .x.  x )  =  (  .0.  .x.  X
) )
1211eqeq1d 2184 . . 3  |-  ( x  =  X  ->  (
(  .0.  .x.  x
)  =  .0.  <->  (  .0.  .x. 
X )  =  .0.  ) )
1312rspcv 2835 . 2  |-  ( X  e.  B  ->  ( A. x  e.  B  (  .0.  .x.  x )  =  .0.  ->  (  .0.  .x. 
X )  =  .0.  ) )
1410, 13mpan9 281 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   0gc0g 12626   Mndcmnd 12682  CMndccmn 12884  mulGrpcmgp 12925  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-mulr 12506  df-0g 12628  df-srg 12940
This theorem is referenced by:  srgmulgass  12965  srgrmhm  12970
  Copyright terms: Public domain W3C validator