ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodisj Unicode version

Theorem icodisj 9805
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )

Proof of Theorem icodisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3264 . . . 4  |-  ( x  e.  ( ( A [,) B )  i^i  ( B [,) C
) )  <->  ( x  e.  ( A [,) B
)  /\  x  e.  ( B [,) C ) ) )
2 elico1 9736 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
323adant3 1002 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
43biimpa 294 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  < 
B ) )
54simp3d 996 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  x  <  B )
65adantrr 471 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  x  <  B
)
7 elico1 9736 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
873adant1 1000 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
98biimpa 294 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  (
x  e.  RR*  /\  B  <_  x  /\  x  < 
C ) )
109simp2d 995 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  <_  x )
11 simpl2 986 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  e.  RR* )
129simp1d 994 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  x  e.  RR* )
13 xrlenlt 7853 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1411, 12, 13syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1510, 14mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  -.  x  <  B )
1615adantrl 470 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  -.  x  <  B )
176, 16pm2.65da 651 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )
1817pm2.21d 609 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) )  ->  x  e.  (/) ) )
191, 18syl5bi 151 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( ( A [,) B )  i^i  ( B [,) C ) )  ->  x  e.  (/) ) )
2019ssrdv 3108 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) )
21 ss0 3408 . 2  |-  ( ( ( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) 
->  ( ( A [,) B )  i^i  ( B [,) C ) )  =  (/) )
2220, 21syl 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481    i^i cin 3075    C_ wss 3076   (/)c0 3368   class class class wbr 3937  (class class class)co 5782   RR*cxr 7823    < clt 7824    <_ cle 7825   [,)cico 9703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-le 7830  df-ico 9707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator