| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > icodisj | Unicode version | ||
| Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| Ref | Expression |
|---|---|
| icodisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3355 |
. . . 4
| |
| 2 | elico1 10044 |
. . . . . . . . . 10
| |
| 3 | 2 | 3adant3 1019 |
. . . . . . . . 9
|
| 4 | 3 | biimpa 296 |
. . . . . . . 8
|
| 5 | 4 | simp3d 1013 |
. . . . . . 7
|
| 6 | 5 | adantrr 479 |
. . . . . 6
|
| 7 | elico1 10044 |
. . . . . . . . . . 11
| |
| 8 | 7 | 3adant1 1017 |
. . . . . . . . . 10
|
| 9 | 8 | biimpa 296 |
. . . . . . . . 9
|
| 10 | 9 | simp2d 1012 |
. . . . . . . 8
|
| 11 | simpl2 1003 |
. . . . . . . . 9
| |
| 12 | 9 | simp1d 1011 |
. . . . . . . . 9
|
| 13 | xrlenlt 8136 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | syl2anc 411 |
. . . . . . . 8
|
| 15 | 10, 14 | mpbid 147 |
. . . . . . 7
|
| 16 | 15 | adantrl 478 |
. . . . . 6
|
| 17 | 6, 16 | pm2.65da 662 |
. . . . 5
|
| 18 | 17 | pm2.21d 620 |
. . . 4
|
| 19 | 1, 18 | biimtrid 152 |
. . 3
|
| 20 | 19 | ssrdv 3198 |
. 2
|
| 21 | ss0 3500 |
. 2
| |
| 22 | 20, 21 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-le 8112 df-ico 10015 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |