ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodisj Unicode version

Theorem icodisj 10184
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )

Proof of Theorem icodisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . 4  |-  ( x  e.  ( ( A [,) B )  i^i  ( B [,) C
) )  <->  ( x  e.  ( A [,) B
)  /\  x  e.  ( B [,) C ) ) )
2 elico1 10115 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
323adant3 1041 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
43biimpa 296 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  < 
B ) )
54simp3d 1035 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  x  <  B )
65adantrr 479 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  x  <  B
)
7 elico1 10115 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
873adant1 1039 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
98biimpa 296 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  (
x  e.  RR*  /\  B  <_  x  /\  x  < 
C ) )
109simp2d 1034 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  <_  x )
11 simpl2 1025 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  e.  RR* )
129simp1d 1033 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  x  e.  RR* )
13 xrlenlt 8207 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1411, 12, 13syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1510, 14mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  -.  x  <  B )
1615adantrl 478 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  -.  x  <  B )
176, 16pm2.65da 665 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )
1817pm2.21d 622 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) )  ->  x  e.  (/) ) )
191, 18biimtrid 152 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( ( A [,) B )  i^i  ( B [,) C ) )  ->  x  e.  (/) ) )
2019ssrdv 3230 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) )
21 ss0 3532 . 2  |-  ( ( ( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) 
->  ( ( A [,) B )  i^i  ( B [,) C ) )  =  (/) )
2220, 21syl 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4082  (class class class)co 6000   RR*cxr 8176    < clt 8177    <_ cle 8178   [,)cico 10082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-le 8183  df-ico 10086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator