Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icodisj | Unicode version |
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
icodisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . . . 4 | |
2 | elico1 9873 | . . . . . . . . . 10 | |
3 | 2 | 3adant3 1012 | . . . . . . . . 9 |
4 | 3 | biimpa 294 | . . . . . . . 8 |
5 | 4 | simp3d 1006 | . . . . . . 7 |
6 | 5 | adantrr 476 | . . . . . 6 |
7 | elico1 9873 | . . . . . . . . . . 11 | |
8 | 7 | 3adant1 1010 | . . . . . . . . . 10 |
9 | 8 | biimpa 294 | . . . . . . . . 9 |
10 | 9 | simp2d 1005 | . . . . . . . 8 |
11 | simpl2 996 | . . . . . . . . 9 | |
12 | 9 | simp1d 1004 | . . . . . . . . 9 |
13 | xrlenlt 7977 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2anc 409 | . . . . . . . 8 |
15 | 10, 14 | mpbid 146 | . . . . . . 7 |
16 | 15 | adantrl 475 | . . . . . 6 |
17 | 6, 16 | pm2.65da 656 | . . . . 5 |
18 | 17 | pm2.21d 614 | . . . 4 |
19 | 1, 18 | syl5bi 151 | . . 3 |
20 | 19 | ssrdv 3153 | . 2 |
21 | ss0 3454 | . 2 | |
22 | 20, 21 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cin 3120 wss 3121 c0 3414 class class class wbr 3987 (class class class)co 5851 cxr 7946 clt 7947 cle 7948 cico 9840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-le 7953 df-ico 9844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |