ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodisj Unicode version

Theorem icodisj 10084
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )

Proof of Theorem icodisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3347 . . . 4  |-  ( x  e.  ( ( A [,) B )  i^i  ( B [,) C
) )  <->  ( x  e.  ( A [,) B
)  /\  x  e.  ( B [,) C ) ) )
2 elico1 10015 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
323adant3 1019 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
43biimpa 296 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  < 
B ) )
54simp3d 1013 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( A [,) B
) )  ->  x  <  B )
65adantrr 479 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  x  <  B
)
7 elico1 10015 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
873adant1 1017 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( B [,) C )  <->  ( x  e.  RR*  /\  B  <_  x  /\  x  <  C
) ) )
98biimpa 296 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  (
x  e.  RR*  /\  B  <_  x  /\  x  < 
C ) )
109simp2d 1012 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  <_  x )
11 simpl2 1003 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  B  e.  RR* )
129simp1d 1011 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  x  e.  RR* )
13 xrlenlt 8108 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1411, 12, 13syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  ( B  <_  x  <->  -.  x  <  B ) )
1510, 14mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  x  e.  ( B [,) C
) )  ->  -.  x  <  B )
1615adantrl 478 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )  ->  -.  x  <  B )
176, 16pm2.65da 662 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) ) )
1817pm2.21d 620 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( x  e.  ( A [,) B )  /\  x  e.  ( B [,) C ) )  ->  x  e.  (/) ) )
191, 18biimtrid 152 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
x  e.  ( ( A [,) B )  i^i  ( B [,) C ) )  ->  x  e.  (/) ) )
2019ssrdv 3190 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) )
21 ss0 3492 . 2  |-  ( ( ( A [,) B
)  i^i  ( B [,) C ) )  C_  (/) 
->  ( ( A [,) B )  i^i  ( B [,) C ) )  =  (/) )
2220, 21syl 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A [,) B
)  i^i  ( B [,) C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    i^i cin 3156    C_ wss 3157   (/)c0 3451   class class class wbr 4034  (class class class)co 5925   RR*cxr 8077    < clt 8078    <_ cle 8079   [,)cico 9982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-le 8084  df-ico 9986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator