Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixxdisj | Unicode version |
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
ixxssixx.1 | |
ixxun.2 | |
ixxun.3 |
Ref | Expression |
---|---|
ixxdisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3305 | . . . 4 | |
2 | ixxssixx.1 | . . . . . . . . . . 11 | |
3 | 2 | elixx1 9833 | . . . . . . . . . 10 |
4 | 3 | 3adant3 1007 | . . . . . . . . 9 |
5 | 4 | biimpa 294 | . . . . . . . 8 |
6 | 5 | simp3d 1001 | . . . . . . 7 |
7 | 6 | adantrr 471 | . . . . . 6 |
8 | ixxun.2 | . . . . . . . . . . . 12 | |
9 | 8 | elixx1 9833 | . . . . . . . . . . 11 |
10 | 9 | 3adant1 1005 | . . . . . . . . . 10 |
11 | 10 | biimpa 294 | . . . . . . . . 9 |
12 | 11 | simp2d 1000 | . . . . . . . 8 |
13 | simpl2 991 | . . . . . . . . 9 | |
14 | 11 | simp1d 999 | . . . . . . . . 9 |
15 | ixxun.3 | . . . . . . . . 9 | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . . 8 |
17 | 12, 16 | mpbid 146 | . . . . . . 7 |
18 | 17 | adantrl 470 | . . . . . 6 |
19 | 7, 18 | pm2.65da 651 | . . . . 5 |
20 | 19 | pm2.21d 609 | . . . 4 |
21 | 1, 20 | syl5bi 151 | . . 3 |
22 | 21 | ssrdv 3148 | . 2 |
23 | ss0 3449 | . 2 | |
24 | 22, 23 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 crab 2448 cin 3115 wss 3116 c0 3409 class class class wbr 3982 (class class class)co 5842 cmpo 5844 cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: ioodisj 9929 |
Copyright terms: Public domain | W3C validator |