ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxdisj Unicode version

Theorem ixxdisj 10060
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxun.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxun.3  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
Assertion
Ref Expression
ixxdisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) )  =  (/) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)

Proof of Theorem ixxdisj
StepHypRef Expression
1 elin 3364 . . . 4  |-  ( w  e.  ( ( A O B )  i^i  ( B P C ) )  <->  ( w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )
2 ixxssixx.1 . . . . . . . . . . 11  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
32elixx1 10054 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
433adant3 1020 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
54biimpa 296 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
65simp3d 1014 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( A O B ) )  ->  w S B )
76adantrr 479 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )  ->  w S B )
8 ixxun.2 . . . . . . . . . . . 12  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
98elixx1 10054 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( B P C )  <->  ( w  e.  RR*  /\  B T w  /\  w U C ) ) )
1093adant1 1018 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( B P C )  <->  ( w  e.  RR*  /\  B T w  /\  w U C ) ) )
1110biimpa 296 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  (
w  e.  RR*  /\  B T w  /\  w U C ) )
1211simp2d 1013 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  B T w )
13 simpl2 1004 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  B  e.  RR* )
1411simp1d 1012 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  w  e.  RR* )
15 ixxun.3 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
1613, 14, 15syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  ( B T w  <->  -.  w S B ) )
1712, 16mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  -.  w S B )
1817adantrl 478 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )  ->  -.  w S B )
197, 18pm2.65da 663 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )
2019pm2.21d 620 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w  e.  ( A O B )  /\  w  e.  ( B P C ) )  ->  w  e.  (/) ) )
211, 20biimtrid 152 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( ( A O B )  i^i  ( B P C ) )  ->  w  e.  (/) ) )
2221ssrdv 3207 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) ) 
C_  (/) )
23 ss0 3509 . 2  |-  ( ( ( A O B )  i^i  ( B P C ) ) 
C_  (/)  ->  ( ( A O B )  i^i  ( B P C ) )  =  (/) )
2422, 23syl 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   {crab 2490    i^i cin 3173    C_ wss 3174   (/)c0 3468   class class class wbr 4059  (class class class)co 5967    e. cmpo 5969   RR*cxr 8141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146
This theorem is referenced by:  ioodisj  10150
  Copyright terms: Public domain W3C validator