Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixxdisj | Unicode version |
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
ixxssixx.1 | |
ixxun.2 | |
ixxun.3 |
Ref | Expression |
---|---|
ixxdisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3310 | . . . 4 | |
2 | ixxssixx.1 | . . . . . . . . . . 11 | |
3 | 2 | elixx1 9854 | . . . . . . . . . 10 |
4 | 3 | 3adant3 1012 | . . . . . . . . 9 |
5 | 4 | biimpa 294 | . . . . . . . 8 |
6 | 5 | simp3d 1006 | . . . . . . 7 |
7 | 6 | adantrr 476 | . . . . . 6 |
8 | ixxun.2 | . . . . . . . . . . . 12 | |
9 | 8 | elixx1 9854 | . . . . . . . . . . 11 |
10 | 9 | 3adant1 1010 | . . . . . . . . . 10 |
11 | 10 | biimpa 294 | . . . . . . . . 9 |
12 | 11 | simp2d 1005 | . . . . . . . 8 |
13 | simpl2 996 | . . . . . . . . 9 | |
14 | 11 | simp1d 1004 | . . . . . . . . 9 |
15 | ixxun.3 | . . . . . . . . 9 | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . . 8 |
17 | 12, 16 | mpbid 146 | . . . . . . 7 |
18 | 17 | adantrl 475 | . . . . . 6 |
19 | 7, 18 | pm2.65da 656 | . . . . 5 |
20 | 19 | pm2.21d 614 | . . . 4 |
21 | 1, 20 | syl5bi 151 | . . 3 |
22 | 21 | ssrdv 3153 | . 2 |
23 | ss0 3455 | . 2 | |
24 | 22, 23 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 crab 2452 cin 3120 wss 3121 c0 3414 class class class wbr 3989 (class class class)co 5853 cmpo 5855 cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: ioodisj 9950 |
Copyright terms: Public domain | W3C validator |