| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxdisj | Unicode version | ||
| Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 |
|
| ixxun.2 |
|
| ixxun.3 |
|
| Ref | Expression |
|---|---|
| ixxdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3346 |
. . . 4
| |
| 2 | ixxssixx.1 |
. . . . . . . . . . 11
| |
| 3 | 2 | elixx1 9972 |
. . . . . . . . . 10
|
| 4 | 3 | 3adant3 1019 |
. . . . . . . . 9
|
| 5 | 4 | biimpa 296 |
. . . . . . . 8
|
| 6 | 5 | simp3d 1013 |
. . . . . . 7
|
| 7 | 6 | adantrr 479 |
. . . . . 6
|
| 8 | ixxun.2 |
. . . . . . . . . . . 12
| |
| 9 | 8 | elixx1 9972 |
. . . . . . . . . . 11
|
| 10 | 9 | 3adant1 1017 |
. . . . . . . . . 10
|
| 11 | 10 | biimpa 296 |
. . . . . . . . 9
|
| 12 | 11 | simp2d 1012 |
. . . . . . . 8
|
| 13 | simpl2 1003 |
. . . . . . . . 9
| |
| 14 | 11 | simp1d 1011 |
. . . . . . . . 9
|
| 15 | ixxun.3 |
. . . . . . . . 9
| |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | 12, 16 | mpbid 147 |
. . . . . . 7
|
| 18 | 17 | adantrl 478 |
. . . . . 6
|
| 19 | 7, 18 | pm2.65da 662 |
. . . . 5
|
| 20 | 19 | pm2.21d 620 |
. . . 4
|
| 21 | 1, 20 | biimtrid 152 |
. . 3
|
| 22 | 21 | ssrdv 3189 |
. 2
|
| 23 | ss0 3491 |
. 2
| |
| 24 | 22, 23 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: ioodisj 10068 |
| Copyright terms: Public domain | W3C validator |