ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzdisj Unicode version

Theorem uzdisj 9904
Description: The first  N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzdisj  |-  ( ( M ... ( N  -  1 ) )  i^i  ( ZZ>= `  N
) )  =  (/)

Proof of Theorem uzdisj
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elin 3264 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  <->  ( k  e.  ( M ... ( N  -  1 ) )  /\  k  e.  ( ZZ>= `  N )
) )
21simprbi 273 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  e.  ( ZZ>= `  N )
)
3 eluzle 9362 . . . . . 6  |-  ( k  e.  ( ZZ>= `  N
)  ->  N  <_  k )
42, 3syl 14 . . . . 5  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  N  <_  k )
5 eluzel2 9355 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
62, 5syl 14 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
7 eluzelz 9359 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  N
)  ->  k  e.  ZZ )
82, 7syl 14 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  e.  ZZ )
9 zlem1lt 9134 . . . . . 6  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  <_  k  <->  ( N  -  1 )  <  k ) )
106, 8, 9syl2anc 409 . . . . 5  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  ( N  <_  k  <->  ( N  - 
1 )  <  k
) )
114, 10mpbid 146 . . . 4  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  ( N  -  1 )  < 
k )
121simplbi 272 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  e.  ( M ... ( N  -  1 ) ) )
13 elfzle2 9839 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  <_  ( N  -  1 ) )
1412, 13syl 14 . . . . 5  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  <_  ( N  -  1 ) )
158zred 9197 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  e.  RR )
16 peano2zm 9116 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
176, 16syl 14 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  ( N  -  1 )  e.  ZZ )
1817zred 9197 . . . . . 6  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  ( N  -  1 )  e.  RR )
1915, 18lenltd 7904 . . . . 5  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  ( k  <_  ( N  -  1 )  <->  -.  ( N  -  1 )  < 
k ) )
2014, 19mpbid 146 . . . 4  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  -.  ( N  -  1 )  <  k )
2111, 20pm2.21dd 610 . . 3  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  i^i  ( ZZ>= `  N )
)  ->  k  e.  (/) )
2221ssriv 3106 . 2  |-  ( ( M ... ( N  -  1 ) )  i^i  ( ZZ>= `  N
) )  C_  (/)
23 ss0 3408 . 2  |-  ( ( ( M ... ( N  -  1 ) )  i^i  ( ZZ>= `  N ) )  C_  (/) 
->  ( ( M ... ( N  -  1
) )  i^i  ( ZZ>=
`  N ) )  =  (/) )
2422, 23ax-mp 5 1  |-  ( ( M ... ( N  -  1 ) )  i^i  ( ZZ>= `  N
) )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    = wceq 1332    e. wcel 1481    i^i cin 3075    C_ wss 3076   (/)c0 3368   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1c1 7645    < clt 7824    <_ cle 7825    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  2prm  11844
  Copyright terms: Public domain W3C validator