ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0disj Unicode version

Theorem nn0disj 10334
Description: The first  N  + 
1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)

Proof of Theorem nn0disj
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elin 3387 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
21simprbi 275 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
3 eluzle 9734 . . . . . 6  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
42, 3syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_ 
k )
5 eluzel2 9727 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  e.  ZZ )
62, 5syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
7 eluzelz 9731 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  ZZ )
82, 7syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ZZ )
9 zlem1lt 9503 . . . . . 6  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( N  + 
1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  <  k ) )
106, 8, 9syl2anc 411 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  < 
k ) )
114, 10mpbid 147 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  < 
k )
121simplbi 274 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( 0 ... N
) )
13 elfzle2 10224 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
1412, 13syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  <_  N )
158zred 9569 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  RR )
16 elfzel2 10219 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ZZ )
1716adantr 276 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... N )  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  N  e.  ZZ )
181, 17sylbi 121 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
1918zred 9569 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
2015, 19lenltd 8264 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  N  <  k ) )
2118zcnd 9570 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  CC )
22 pncan1 8523 . . . . . . . . . 10  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
2321, 22syl 14 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  =  N )
2423eqcomd 2235 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  =  ( ( N  + 
1 )  -  1 ) )
2524breq1d 4093 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  k  <->  ( ( N  +  1 )  - 
1 )  <  k
) )
2625notbid 671 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( -.  N  <  k  <->  -.  (
( N  +  1 )  -  1 )  <  k ) )
2720, 26bitrd 188 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  ( ( N  +  1 )  -  1 )  < 
k ) )
2814, 27mpbid 147 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( N  +  1 )  -  1 )  <  k )
2911, 28pm2.21dd 623 . . 3  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  (/) )
3029ssriv 3228 . 2  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  C_  (/)
31 ss0 3532 . 2  |-  ( ( ( 0 ... N
)  i^i  ( ZZ>= `  ( N  +  1
) ) )  C_  (/) 
->  ( ( 0 ... N )  i^i  ( ZZ>=
`  ( N  + 
1 ) ) )  =  (/) )
3230, 31ax-mp 5 1  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator