ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0disj Unicode version

Theorem nn0disj 10295
Description: The first  N  + 
1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)

Proof of Theorem nn0disj
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elin 3364 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
21simprbi 275 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
3 eluzle 9695 . . . . . 6  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
42, 3syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_ 
k )
5 eluzel2 9688 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  e.  ZZ )
62, 5syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
7 eluzelz 9692 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  ZZ )
82, 7syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ZZ )
9 zlem1lt 9464 . . . . . 6  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( N  + 
1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  <  k ) )
106, 8, 9syl2anc 411 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  < 
k ) )
114, 10mpbid 147 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  < 
k )
121simplbi 274 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( 0 ... N
) )
13 elfzle2 10185 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
1412, 13syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  <_  N )
158zred 9530 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  RR )
16 elfzel2 10180 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ZZ )
1716adantr 276 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... N )  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  N  e.  ZZ )
181, 17sylbi 121 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
1918zred 9530 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
2015, 19lenltd 8225 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  N  <  k ) )
2118zcnd 9531 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  CC )
22 pncan1 8484 . . . . . . . . . 10  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
2321, 22syl 14 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  =  N )
2423eqcomd 2213 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  =  ( ( N  + 
1 )  -  1 ) )
2524breq1d 4069 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  k  <->  ( ( N  +  1 )  - 
1 )  <  k
) )
2625notbid 669 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( -.  N  <  k  <->  -.  (
( N  +  1 )  -  1 )  <  k ) )
2720, 26bitrd 188 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  ( ( N  +  1 )  -  1 )  < 
k ) )
2814, 27mpbid 147 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( N  +  1 )  -  1 )  <  k )
2911, 28pm2.21dd 621 . . 3  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  (/) )
3029ssriv 3205 . 2  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  C_  (/)
31 ss0 3509 . 2  |-  ( ( ( 0 ... N
)  i^i  ( ZZ>= `  ( N  +  1
) ) )  C_  (/) 
->  ( ( 0 ... N )  i^i  ( ZZ>=
`  ( N  + 
1 ) ) )  =  (/) )
3230, 31ax-mp 5 1  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    i^i cin 3173    C_ wss 3174   (/)c0 3468   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator