ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0disj Unicode version

Theorem nn0disj 9908
Description: The first  N  + 
1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)

Proof of Theorem nn0disj
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elin 3254 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... N
)  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
21simprbi 273 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
3 eluzle 9331 . . . . . 6  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  <_ 
k )
42, 3syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  <_ 
k )
5 eluzel2 9324 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( N  +  1 )  e.  ZZ )
62, 5syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
7 eluzelz 9328 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  ( N  +  1 ) )  ->  k  e.  ZZ )
82, 7syl 14 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ZZ )
9 zlem1lt 9103 . . . . . 6  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( N  + 
1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  <  k ) )
106, 8, 9syl2anc 408 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  <_  k  <->  ( ( N  +  1 )  -  1 )  < 
k ) )
114, 10mpbid 146 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  < 
k )
121simplbi 272 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  ( 0 ... N
) )
13 elfzle2 9801 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
1412, 13syl 14 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  <_  N )
158zred 9166 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  RR )
16 elfzel2 9797 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ZZ )
1716adantr 274 . . . . . . . . 9  |-  ( ( k  e.  ( 0 ... N )  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  ->  N  e.  ZZ )
181, 17sylbi 120 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ZZ )
1918zred 9166 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  RR )
2015, 19lenltd 7873 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  N  <  k ) )
2118zcnd 9167 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  CC )
22 pncan1 8132 . . . . . . . . . 10  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
2321, 22syl 14 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( ( N  +  1 )  -  1 )  =  N )
2423eqcomd 2143 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  =  ( ( N  + 
1 )  -  1 ) )
2524breq1d 3934 . . . . . . 7  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( N  <  k  <->  ( ( N  +  1 )  - 
1 )  <  k
) )
2625notbid 656 . . . . . 6  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( -.  N  <  k  <->  -.  (
( N  +  1 )  -  1 )  <  k ) )
2720, 26bitrd 187 . . . . 5  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( k  <_  N  <->  -.  ( ( N  +  1 )  -  1 )  < 
k ) )
2814, 27mpbid 146 . . . 4  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  -.  (
( N  +  1 )  -  1 )  <  k )
2911, 28pm2.21dd 609 . . 3  |-  ( k  e.  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  (/) )
3029ssriv 3096 . 2  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  C_  (/)
31 ss0 3398 . 2  |-  ( ( ( 0 ... N
)  i^i  ( ZZ>= `  ( N  +  1
) ) )  C_  (/) 
->  ( ( 0 ... N )  i^i  ( ZZ>=
`  ( N  + 
1 ) ) )  =  (/) )
3230, 31ax-mp 5 1  |-  ( ( 0 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    i^i cin 3065    C_ wss 3066   (/)c0 3358   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator