| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzom1elp1fzo | Unicode version | ||
| Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| elfzom1elp1fzo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz 10359 |
. . . . . . 7
| |
| 2 | elfzuz2 10225 |
. . . . . . 7
| |
| 3 | elnn0uz 9760 |
. . . . . . . 8
| |
| 4 | zcn 9451 |
. . . . . . . . . . 11
| |
| 5 | 4 | anim1i 340 |
. . . . . . . . . 10
|
| 6 | elnnnn0 9412 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . . . 9
|
| 8 | 7 | expcom 116 |
. . . . . . . 8
|
| 9 | 3, 8 | sylbir 135 |
. . . . . . 7
|
| 10 | 1, 2, 9 | 3syl 17 |
. . . . . 6
|
| 11 | 10 | impcom 125 |
. . . . 5
|
| 12 | 1nn0 9385 |
. . . . . . 7
| |
| 13 | 12 | a1i 9 |
. . . . . 6
|
| 14 | nnnn0 9376 |
. . . . . 6
| |
| 15 | nnge1 9133 |
. . . . . 6
| |
| 16 | 13, 14, 15 | 3jca 1201 |
. . . . 5
|
| 17 | 11, 16 | syl 14 |
. . . 4
|
| 18 | elfz2nn0 10308 |
. . . 4
| |
| 19 | 17, 18 | sylibr 134 |
. . 3
|
| 20 | fzossrbm1 10371 |
. . . . . . 7
| |
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | fzossfz 10362 |
. . . . . 6
| |
| 23 | 21, 22 | sstrdi 3236 |
. . . . 5
|
| 24 | simpr 110 |
. . . . 5
| |
| 25 | 23, 24 | jca 306 |
. . . 4
|
| 26 | ssel2 3219 |
. . . 4
| |
| 27 | elfzubelfz 10232 |
. . . 4
| |
| 28 | 25, 26, 27 | 3syl 17 |
. . 3
|
| 29 | 19, 28 | jca 306 |
. 2
|
| 30 | elfzodifsumelfzo 10407 |
. 2
| |
| 31 | 29, 24, 30 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |