| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzom1elp1fzo | Unicode version | ||
| Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| elfzom1elp1fzo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz 10287 |
. . . . . . 7
| |
| 2 | elfzuz2 10153 |
. . . . . . 7
| |
| 3 | elnn0uz 9688 |
. . . . . . . 8
| |
| 4 | zcn 9379 |
. . . . . . . . . . 11
| |
| 5 | 4 | anim1i 340 |
. . . . . . . . . 10
|
| 6 | elnnnn0 9340 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | sylibr 134 |
. . . . . . . . 9
|
| 8 | 7 | expcom 116 |
. . . . . . . 8
|
| 9 | 3, 8 | sylbir 135 |
. . . . . . 7
|
| 10 | 1, 2, 9 | 3syl 17 |
. . . . . 6
|
| 11 | 10 | impcom 125 |
. . . . 5
|
| 12 | 1nn0 9313 |
. . . . . . 7
| |
| 13 | 12 | a1i 9 |
. . . . . 6
|
| 14 | nnnn0 9304 |
. . . . . 6
| |
| 15 | nnge1 9061 |
. . . . . 6
| |
| 16 | 13, 14, 15 | 3jca 1180 |
. . . . 5
|
| 17 | 11, 16 | syl 14 |
. . . 4
|
| 18 | elfz2nn0 10236 |
. . . 4
| |
| 19 | 17, 18 | sylibr 134 |
. . 3
|
| 20 | fzossrbm1 10299 |
. . . . . . 7
| |
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | fzossfz 10290 |
. . . . . 6
| |
| 23 | 21, 22 | sstrdi 3205 |
. . . . 5
|
| 24 | simpr 110 |
. . . . 5
| |
| 25 | 23, 24 | jca 306 |
. . . 4
|
| 26 | ssel2 3188 |
. . . 4
| |
| 27 | elfzubelfz 10160 |
. . . 4
| |
| 28 | 25, 26, 27 | 3syl 17 |
. . 3
|
| 29 | 19, 28 | jca 306 |
. 2
|
| 30 | elfzodifsumelfzo 10332 |
. 2
| |
| 31 | 29, 24, 30 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-fzo 10267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |