ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem Unicode version

Theorem shftlem 10758
Description: Two ways to write a shifted set  ( B  +  A ). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2453 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  B }  =  {
x  |  ( x  e.  CC  /\  (
x  -  A )  e.  B ) }
2 npcan 8107 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
32ancoms 266 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
43eqcomd 2171 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
5 oveq1 5849 . . . . . . . . . 10  |-  ( y  =  ( x  -  A )  ->  (
y  +  A )  =  ( ( x  -  A )  +  A ) )
65eqeq2d 2177 . . . . . . . . 9  |-  ( y  =  ( x  -  A )  ->  (
x  =  ( y  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
76rspcev 2830 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  B  /\  x  =  ( (
x  -  A )  +  A ) )  ->  E. y  e.  B  x  =  ( y  +  A ) )
87expcom 115 . . . . . . 7  |-  ( x  =  ( ( x  -  A )  +  A )  ->  (
( x  -  A
)  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
94, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
109expimpd 361 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
1110adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A
) ) )
12 ssel2 3137 . . . . . . . . . 10  |-  ( ( B  C_  CC  /\  y  e.  B )  ->  y  e.  CC )
13 addcl 7878 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( y  +  A
)  e.  CC )
1412, 13sylan 281 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( y  +  A )  e.  CC )
15 pncan 8104 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A
)  =  y )
1612, 15sylan 281 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  =  y )
17 simplr 520 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  y  e.  B
)
1816, 17eqeltrd 2243 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  e.  B
)
1914, 18jca 304 . . . . . . . 8  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A )  e.  B ) )
2019ancoms 266 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  C_  CC  /\  y  e.  B )
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
2120anassrs 398 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
22 eleq1 2229 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
x  e.  CC  <->  ( y  +  A )  e.  CC ) )
23 oveq1 5849 . . . . . . . 8  |-  ( x  =  ( y  +  A )  ->  (
x  -  A )  =  ( ( y  +  A )  -  A ) )
2423eleq1d 2235 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
( x  -  A
)  e.  B  <->  ( (
y  +  A )  -  A )  e.  B ) )
2522, 24anbi12d 465 . . . . . 6  |-  ( x  =  ( y  +  A )  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  <-> 
( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A
)  e.  B ) ) )
2621, 25syl5ibrcom 156 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( x  =  ( y  +  A )  ->  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) ) )
2726rexlimdva 2583 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( E. y  e.  B  x  =  ( y  +  A )  ->  ( x  e.  CC  /\  ( x  -  A )  e.  B ) ) )
2811, 27impbid 128 . . 3  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  <->  E. y  e.  B  x  =  ( y  +  A
) ) )
2928abbidv 2284 . 2  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
301, 29syl5eq 2211 1  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   {crab 2448    C_ wss 3116  (class class class)co 5842   CCcc 7751    + caddc 7756    - cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator