ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem Unicode version

Theorem shftlem 10620
Description: Two ways to write a shifted set  ( B  +  A ). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2426 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  B }  =  {
x  |  ( x  e.  CC  /\  (
x  -  A )  e.  B ) }
2 npcan 7995 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
32ancoms 266 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
43eqcomd 2146 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
5 oveq1 5789 . . . . . . . . . 10  |-  ( y  =  ( x  -  A )  ->  (
y  +  A )  =  ( ( x  -  A )  +  A ) )
65eqeq2d 2152 . . . . . . . . 9  |-  ( y  =  ( x  -  A )  ->  (
x  =  ( y  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
76rspcev 2793 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  B  /\  x  =  ( (
x  -  A )  +  A ) )  ->  E. y  e.  B  x  =  ( y  +  A ) )
87expcom 115 . . . . . . 7  |-  ( x  =  ( ( x  -  A )  +  A )  ->  (
( x  -  A
)  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
94, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
109expimpd 361 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
1110adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A
) ) )
12 ssel2 3097 . . . . . . . . . 10  |-  ( ( B  C_  CC  /\  y  e.  B )  ->  y  e.  CC )
13 addcl 7769 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( y  +  A
)  e.  CC )
1412, 13sylan 281 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( y  +  A )  e.  CC )
15 pncan 7992 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A
)  =  y )
1612, 15sylan 281 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  =  y )
17 simplr 520 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  y  e.  B
)
1816, 17eqeltrd 2217 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  e.  B
)
1914, 18jca 304 . . . . . . . 8  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A )  e.  B ) )
2019ancoms 266 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  C_  CC  /\  y  e.  B )
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
2120anassrs 398 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
22 eleq1 2203 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
x  e.  CC  <->  ( y  +  A )  e.  CC ) )
23 oveq1 5789 . . . . . . . 8  |-  ( x  =  ( y  +  A )  ->  (
x  -  A )  =  ( ( y  +  A )  -  A ) )
2423eleq1d 2209 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
( x  -  A
)  e.  B  <->  ( (
y  +  A )  -  A )  e.  B ) )
2522, 24anbi12d 465 . . . . . 6  |-  ( x  =  ( y  +  A )  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  <-> 
( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A
)  e.  B ) ) )
2621, 25syl5ibrcom 156 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( x  =  ( y  +  A )  ->  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) ) )
2726rexlimdva 2552 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( E. y  e.  B  x  =  ( y  +  A )  ->  ( x  e.  CC  /\  ( x  -  A )  e.  B ) ) )
2811, 27impbid 128 . . 3  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  <->  E. y  e.  B  x  =  ( y  +  A
) ) )
2928abbidv 2258 . 2  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
301, 29syl5eq 2185 1  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   {crab 2421    C_ wss 3076  (class class class)co 5782   CCcc 7642    + caddc 7647    - cmin 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator