Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftlem | Unicode version |
Description: Two ways to write a shifted set . (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
shftlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . 2 | |
2 | npcan 8115 | . . . . . . . . 9 | |
3 | 2 | ancoms 266 | . . . . . . . 8 |
4 | 3 | eqcomd 2176 | . . . . . . 7 |
5 | oveq1 5857 | . . . . . . . . . 10 | |
6 | 5 | eqeq2d 2182 | . . . . . . . . 9 |
7 | 6 | rspcev 2834 | . . . . . . . 8 |
8 | 7 | expcom 115 | . . . . . . 7 |
9 | 4, 8 | syl 14 | . . . . . 6 |
10 | 9 | expimpd 361 | . . . . 5 |
11 | 10 | adantr 274 | . . . 4 |
12 | ssel2 3142 | . . . . . . . . . 10 | |
13 | addcl 7886 | . . . . . . . . . 10 | |
14 | 12, 13 | sylan 281 | . . . . . . . . 9 |
15 | pncan 8112 | . . . . . . . . . . 11 | |
16 | 12, 15 | sylan 281 | . . . . . . . . . 10 |
17 | simplr 525 | . . . . . . . . . 10 | |
18 | 16, 17 | eqeltrd 2247 | . . . . . . . . 9 |
19 | 14, 18 | jca 304 | . . . . . . . 8 |
20 | 19 | ancoms 266 | . . . . . . 7 |
21 | 20 | anassrs 398 | . . . . . 6 |
22 | eleq1 2233 | . . . . . . 7 | |
23 | oveq1 5857 | . . . . . . . 8 | |
24 | 23 | eleq1d 2239 | . . . . . . 7 |
25 | 22, 24 | anbi12d 470 | . . . . . 6 |
26 | 21, 25 | syl5ibrcom 156 | . . . . 5 |
27 | 26 | rexlimdva 2587 | . . . 4 |
28 | 11, 27 | impbid 128 | . . 3 |
29 | 28 | abbidv 2288 | . 2 |
30 | 1, 29 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 wrex 2449 crab 2452 wss 3121 (class class class)co 5850 cc 7759 caddc 7764 cmin 8077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-resscn 7853 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-sub 8079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |