| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: elnn 4653 funimass4 5628 fvelimab 5634 ssimaex 5639 funconstss 5697 rexima 5822 ralima 5823 1st2nd 6266 f1o2ndf1 6313 tfri1dALT 6436 eldju1st 7172 axsuploc 8144 lbinf 9020 dfinfre 9028 lbzbi 9736 elfzom1elp1fzo 10329 ssfzo12 10351 seq3split 10631 seqsplitg 10632 shftlem 11069 uzwodc 12300 subgintm 13476 subrngintm 13916 subrgintm 13947 tgcl 14478 neipsm 14568 txbasval 14681 elmopn2 14863 metrest 14920 cncfmet 15006 negcncf 15019 ply1term 15157 plyconst 15159 reeff1olem 15185 |
| Copyright terms: Public domain | W3C validator |