| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: elnn 4697 funimass4 5683 fvelimab 5689 ssimaex 5694 funconstss 5752 rexima 5877 ralima 5878 1st2nd 6325 f1o2ndf1 6372 tfri1dALT 6495 eldju1st 7234 axsuploc 8215 lbinf 9091 dfinfre 9099 lbzbi 9807 elfzom1elp1fzo 10403 ssfzo12 10425 seq3split 10705 seqsplitg 10706 shftlem 11322 uzwodc 12553 subgintm 13730 subrngintm 14170 subrgintm 14201 tgcl 14732 neipsm 14822 txbasval 14935 elmopn2 15117 metrest 15174 cncfmet 15260 negcncf 15273 ply1term 15411 plyconst 15413 reeff1olem 15439 usgruspgrben 15978 |
| Copyright terms: Public domain | W3C validator |