ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 GIF version

Theorem ssel2 3187
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3186 . 2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
21imp 124 1 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  elnn  4652  funimass4  5623  fvelimab  5629  ssimaex  5634  funconstss  5692  rexima  5813  ralima  5814  1st2nd  6257  f1o2ndf1  6304  tfri1dALT  6427  eldju1st  7155  axsuploc  8127  lbinf  9003  dfinfre  9011  lbzbi  9719  elfzom1elp1fzo  10312  ssfzo12  10334  seq3split  10614  seqsplitg  10615  shftlem  11046  uzwodc  12277  subgintm  13452  subrngintm  13892  subrgintm  13923  tgcl  14454  neipsm  14544  txbasval  14657  elmopn2  14839  metrest  14896  cncfmet  14982  negcncf  14995  ply1term  15133  plyconst  15135  reeff1olem  15161
  Copyright terms: Public domain W3C validator