| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: elnn 4662 funimass4 5642 fvelimab 5648 ssimaex 5653 funconstss 5711 rexima 5836 ralima 5837 1st2nd 6280 f1o2ndf1 6327 tfri1dALT 6450 eldju1st 7188 axsuploc 8165 lbinf 9041 dfinfre 9049 lbzbi 9757 elfzom1elp1fzo 10353 ssfzo12 10375 seq3split 10655 seqsplitg 10656 shftlem 11202 uzwodc 12433 subgintm 13609 subrngintm 14049 subrgintm 14080 tgcl 14611 neipsm 14701 txbasval 14814 elmopn2 14996 metrest 15053 cncfmet 15139 negcncf 15152 ply1term 15290 plyconst 15292 reeff1olem 15318 |
| Copyright terms: Public domain | W3C validator |