ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 GIF version

Theorem ssel2 3179
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3178 . 2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
21imp 124 1 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  elnn  4643  funimass4  5614  fvelimab  5620  ssimaex  5625  funconstss  5683  rexima  5804  ralima  5805  1st2nd  6248  f1o2ndf1  6295  tfri1dALT  6418  eldju1st  7146  axsuploc  8118  lbinf  8994  dfinfre  9002  lbzbi  9709  elfzom1elp1fzo  10297  ssfzo12  10319  seq3split  10599  seqsplitg  10600  shftlem  11000  uzwodc  12231  subgintm  13406  subrngintm  13846  subrgintm  13877  tgcl  14408  neipsm  14498  txbasval  14611  elmopn2  14793  metrest  14850  cncfmet  14936  negcncf  14949  ply1term  15087  plyconst  15089  reeff1olem  15115
  Copyright terms: Public domain W3C validator