ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 GIF version

Theorem ssel2 3219
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3218 . 2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
21imp 124 1 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  elnn  4697  funimass4  5683  fvelimab  5689  ssimaex  5694  funconstss  5752  rexima  5877  ralima  5878  1st2nd  6325  f1o2ndf1  6372  tfri1dALT  6495  eldju1st  7234  axsuploc  8215  lbinf  9091  dfinfre  9099  lbzbi  9807  elfzom1elp1fzo  10403  ssfzo12  10425  seq3split  10705  seqsplitg  10706  shftlem  11322  uzwodc  12553  subgintm  13730  subrngintm  14170  subrgintm  14201  tgcl  14732  neipsm  14822  txbasval  14935  elmopn2  15117  metrest  15174  cncfmet  15260  negcncf  15273  ply1term  15411  plyconst  15413  reeff1olem  15439  usgruspgrben  15978
  Copyright terms: Public domain W3C validator