ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 GIF version

Theorem ssel2 3192
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3191 . 2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
21imp 124 1 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  elnn  4662  funimass4  5642  fvelimab  5648  ssimaex  5653  funconstss  5711  rexima  5836  ralima  5837  1st2nd  6280  f1o2ndf1  6327  tfri1dALT  6450  eldju1st  7188  axsuploc  8165  lbinf  9041  dfinfre  9049  lbzbi  9757  elfzom1elp1fzo  10353  ssfzo12  10375  seq3split  10655  seqsplitg  10656  shftlem  11202  uzwodc  12433  subgintm  13609  subrngintm  14049  subrgintm  14080  tgcl  14611  neipsm  14701  txbasval  14814  elmopn2  14996  metrest  15053  cncfmet  15139  negcncf  15152  ply1term  15290  plyconst  15292  reeff1olem  15318
  Copyright terms: Public domain W3C validator