| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: elnn 4643 funimass4 5614 fvelimab 5620 ssimaex 5625 funconstss 5683 rexima 5804 ralima 5805 1st2nd 6248 f1o2ndf1 6295 tfri1dALT 6418 eldju1st 7146 axsuploc 8118 lbinf 8994 dfinfre 9002 lbzbi 9709 elfzom1elp1fzo 10297 ssfzo12 10319 seq3split 10599 seqsplitg 10600 shftlem 11000 uzwodc 12231 subgintm 13406 subrngintm 13846 subrgintm 13877 tgcl 14408 neipsm 14498 txbasval 14611 elmopn2 14793 metrest 14850 cncfmet 14936 negcncf 14949 ply1term 15087 plyconst 15089 reeff1olem 15115 |
| Copyright terms: Public domain | W3C validator |