ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 GIF version

Theorem ssel2 3187
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3186 . 2 (𝐴𝐵 → (𝐶𝐴𝐶𝐵))
21imp 124 1 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  elnn  4653  funimass4  5628  fvelimab  5634  ssimaex  5639  funconstss  5697  rexima  5822  ralima  5823  1st2nd  6266  f1o2ndf1  6313  tfri1dALT  6436  eldju1st  7172  axsuploc  8144  lbinf  9020  dfinfre  9028  lbzbi  9736  elfzom1elp1fzo  10329  ssfzo12  10351  seq3split  10631  seqsplitg  10632  shftlem  11069  uzwodc  12300  subgintm  13476  subrngintm  13916  subrgintm  13947  tgcl  14478  neipsm  14568  txbasval  14681  elmopn2  14863  metrest  14920  cncfmet  15006  negcncf  15019  ply1term  15157  plyconst  15159  reeff1olem  15185
  Copyright terms: Public domain W3C validator