![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3019 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | 1 | imp 122 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-in 3005 df-ss 3012 |
This theorem is referenced by: elnn 4418 funimass4 5349 fvelimab 5354 ssimaex 5359 funconstss 5411 rexima 5526 ralima 5527 1st2nd 5943 f1o2ndf1 5985 tfri1dALT 6108 eldju1st 6752 lbinf 8399 dfinfre 8407 lbzbi 9091 elfzom1elp1fzo 9601 ssfzo12 9623 seq3split 9895 iseqsplit 9896 shftlem 10238 |
Copyright terms: Public domain | W3C validator |