![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3173 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: elnn 4638 funimass4 5607 fvelimab 5613 ssimaex 5618 funconstss 5676 rexima 5797 ralima 5798 1st2nd 6234 f1o2ndf1 6281 tfri1dALT 6404 eldju1st 7130 axsuploc 8092 lbinf 8967 dfinfre 8975 lbzbi 9681 elfzom1elp1fzo 10269 ssfzo12 10291 seq3split 10559 seqsplitg 10560 shftlem 10960 uzwodc 12174 subgintm 13268 subrngintm 13708 subrgintm 13739 tgcl 14232 neipsm 14322 txbasval 14435 elmopn2 14617 metrest 14674 cncfmet 14747 negcncf 14759 ply1term 14889 plyconst 14891 reeff1olem 14906 |
Copyright terms: Public domain | W3C validator |