Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
2 | 1 | imp 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: elnn 4583 funimass4 5537 fvelimab 5542 ssimaex 5547 funconstss 5603 rexima 5723 ralima 5724 1st2nd 6149 f1o2ndf1 6196 tfri1dALT 6319 eldju1st 7036 axsuploc 7971 lbinf 8843 dfinfre 8851 lbzbi 9554 elfzom1elp1fzo 10137 ssfzo12 10159 seq3split 10414 shftlem 10758 uzwodc 11970 tgcl 12714 neipsm 12804 txbasval 12917 elmopn2 13099 metrest 13156 cncfmet 13229 negcncf 13238 reeff1olem 13342 |
Copyright terms: Public domain | W3C validator |