| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: elnn 4652 funimass4 5623 fvelimab 5629 ssimaex 5634 funconstss 5692 rexima 5813 ralima 5814 1st2nd 6257 f1o2ndf1 6304 tfri1dALT 6427 eldju1st 7155 axsuploc 8127 lbinf 9003 dfinfre 9011 lbzbi 9719 elfzom1elp1fzo 10312 ssfzo12 10334 seq3split 10614 seqsplitg 10615 shftlem 11046 uzwodc 12277 subgintm 13452 subrngintm 13892 subrgintm 13923 tgcl 14454 neipsm 14544 txbasval 14657 elmopn2 14839 metrest 14896 cncfmet 14982 negcncf 14995 ply1term 15133 plyconst 15135 reeff1olem 15161 |
| Copyright terms: Public domain | W3C validator |