![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version |
Description: Weakening of ssid 3200. (Contributed by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ssidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3200 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: isum 11531 fsum3ser 11543 fsumcl 11546 iprodap 11726 iprodap0 11728 fprodssdc 11736 fprodcl 11753 fprodclf 11781 ennnfoneleminc 12571 submid 13052 mulgnncl 13210 mulgnn0cl 13211 mulgcl 13212 subgid 13248 ablressid 13408 gsumfzreidx 13410 rngressid 13453 ringressid 13562 mulgass3 13584 subrngid 13700 lss1 13861 rlmfn 13952 rlmvalg 13953 rlmbasg 13954 rlmplusgg 13955 rlm0g 13956 rlmmulrg 13958 rlmscabas 13959 rlmvscag 13960 rlmtopng 13961 rlmdsg 13962 restopn2 14362 negcncf 14784 mulcncf 14787 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvexp 14890 dvrecap 14892 dvmptcmulcn 14900 dvmptnegcn 14901 dvmptsubcn 14902 dveflem 14905 dvef 14906 bj-charfundcALT 15371 |
Copyright terms: Public domain | W3C validator |