| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3203. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3203 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: isum 11550 fsum3ser 11562 fsumcl 11565 iprodap 11745 iprodap0 11747 fprodssdc 11755 fprodcl 11772 fprodclf 11800 ennnfoneleminc 12628 submid 13109 mulgnncl 13267 mulgnn0cl 13268 mulgcl 13269 subgid 13305 ablressid 13465 gsumfzreidx 13467 rngressid 13510 ringressid 13619 mulgass3 13641 subrngid 13757 lss1 13918 rlmfn 14009 rlmvalg 14010 rlmbasg 14011 rlmplusgg 14012 rlm0g 14013 rlmmulrg 14015 rlmscabas 14016 rlmvscag 14017 rlmtopng 14018 rlmdsg 14019 restopn2 14419 negcncf 14841 mulcncf 14844 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 dvexp 14947 dvrecap 14949 dvmptcmulcn 14957 dvmptnegcn 14958 dvmptsubcn 14959 dveflem 14962 dvef 14963 bj-charfundcALT 15455 |
| Copyright terms: Public domain | W3C validator |