| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3204. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: isum 11569 fsum3ser 11581 fsumcl 11584 iprodap 11764 iprodap0 11766 fprodssdc 11774 fprodcl 11791 fprodclf 11819 ennnfoneleminc 12655 submid 13181 mulgnncl 13345 mulgnn0cl 13346 mulgcl 13347 subgid 13383 ablressid 13543 gsumfzreidx 13545 rngressid 13588 ringressid 13697 mulgass3 13719 subrngid 13835 lss1 13996 rlmfn 14087 rlmvalg 14088 rlmbasg 14089 rlmplusgg 14090 rlm0g 14091 rlmmulrg 14093 rlmscabas 14094 rlmvscag 14095 rlmtopng 14096 rlmdsg 14097 restopn2 14527 negcncf 14949 mulcncf 14952 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dvaddxxbr 15045 dvmulxxbr 15046 dvcoapbr 15051 dvcjbr 15052 dvexp 15055 dvrecap 15057 dvmptcmulcn 15065 dvmptnegcn 15066 dvmptsubcn 15067 dveflem 15070 dvef 15071 bj-charfundcALT 15563 |
| Copyright terms: Public domain | W3C validator |