![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version |
Description: Weakening of ssid 3175. (Contributed by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ssidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3175 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3135 df-ss 3142 |
This theorem is referenced by: isum 11388 fsum3ser 11400 fsumcl 11403 iprodap 11583 iprodap0 11585 fprodssdc 11593 fprodcl 11610 fprodclf 11638 ennnfoneleminc 12406 submid 12822 mulgnncl 12952 mulgnn0cl 12953 mulgcl 12954 subgid 12988 ringressid 13191 mulgass3 13207 restopn2 13576 negcncf 13981 mulcncf 13984 dvidlemap 14053 dvaddxxbr 14058 dvmulxxbr 14059 dvcoapbr 14064 dvcjbr 14065 dvexp 14068 dvrecap 14070 dvmptcmulcn 14076 dvmptnegcn 14077 dvmptsubcn 14078 dveflem 14080 dvef 14081 bj-charfundcALT 14443 |
Copyright terms: Public domain | W3C validator |