| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3212. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: isum 11638 fsum3ser 11650 fsumcl 11653 iprodap 11833 iprodap0 11835 fprodssdc 11843 fprodcl 11860 fprodclf 11888 ennnfoneleminc 12724 submid 13251 mulgnncl 13415 mulgnn0cl 13416 mulgcl 13417 subgid 13453 ablressid 13613 gsumfzreidx 13615 rngressid 13658 ringressid 13767 mulgass3 13789 subrngid 13905 lss1 14066 rlmfn 14157 rlmvalg 14158 rlmbasg 14159 rlmplusgg 14160 rlm0g 14161 rlmmulrg 14163 rlmscabas 14164 rlmvscag 14165 rlmtopng 14166 rlmdsg 14167 restopn2 14597 negcncf 15019 mulcncf 15022 dvidlemap 15105 dvidrelem 15106 dvidsslem 15107 dvaddxxbr 15115 dvmulxxbr 15116 dvcoapbr 15121 dvcjbr 15122 dvexp 15125 dvrecap 15127 dvmptcmulcn 15135 dvmptnegcn 15136 dvmptsubcn 15137 dveflem 15140 dvef 15141 bj-charfundcALT 15678 |
| Copyright terms: Public domain | W3C validator |