| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3212. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: isum 11667 fsum3ser 11679 fsumcl 11682 iprodap 11862 iprodap0 11864 fprodssdc 11872 fprodcl 11889 fprodclf 11917 ennnfoneleminc 12753 submid 13280 mulgnncl 13444 mulgnn0cl 13445 mulgcl 13446 subgid 13482 ablressid 13642 gsumfzreidx 13644 rngressid 13687 ringressid 13796 mulgass3 13818 subrngid 13934 lss1 14095 rlmfn 14186 rlmvalg 14187 rlmbasg 14188 rlmplusgg 14189 rlm0g 14190 rlmmulrg 14192 rlmscabas 14193 rlmvscag 14194 rlmtopng 14195 rlmdsg 14196 restopn2 14626 negcncf 15048 mulcncf 15051 dvidlemap 15134 dvidrelem 15135 dvidsslem 15136 dvaddxxbr 15144 dvmulxxbr 15145 dvcoapbr 15150 dvcjbr 15151 dvexp 15154 dvrecap 15156 dvmptcmulcn 15164 dvmptnegcn 15165 dvmptsubcn 15166 dveflem 15169 dvef 15170 bj-charfundcALT 15707 |
| Copyright terms: Public domain | W3C validator |