![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version |
Description: Weakening of ssid 3199. (Contributed by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ssidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3199 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: isum 11528 fsum3ser 11540 fsumcl 11543 iprodap 11723 iprodap0 11725 fprodssdc 11733 fprodcl 11750 fprodclf 11778 ennnfoneleminc 12568 submid 13049 mulgnncl 13207 mulgnn0cl 13208 mulgcl 13209 subgid 13245 ablressid 13405 gsumfzreidx 13407 rngressid 13450 ringressid 13559 mulgass3 13581 subrngid 13697 lss1 13858 rlmfn 13949 rlmvalg 13950 rlmbasg 13951 rlmplusgg 13952 rlm0g 13953 rlmmulrg 13955 rlmscabas 13956 rlmvscag 13957 rlmtopng 13958 rlmdsg 13959 restopn2 14351 negcncf 14759 mulcncf 14762 dvidlemap 14845 dvaddxxbr 14850 dvmulxxbr 14851 dvcoapbr 14856 dvcjbr 14857 dvexp 14860 dvrecap 14862 dvmptcmulcn 14868 dvmptnegcn 14869 dvmptsubcn 14870 dveflem 14872 dvef 14873 bj-charfundcALT 15301 |
Copyright terms: Public domain | W3C validator |