| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3244. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: swrd0g 11187 isum 11891 fsum3ser 11903 fsumcl 11906 iprodap 12086 iprodap0 12088 fprodssdc 12096 fprodcl 12113 fprodclf 12141 ennnfoneleminc 12977 submid 13505 mulgnncl 13669 mulgnn0cl 13670 mulgcl 13671 subgid 13707 ablressid 13867 gsumfzreidx 13869 rngressid 13912 ringressid 14021 mulgass3 14043 subrngid 14159 lss1 14320 rlmfn 14411 rlmvalg 14412 rlmbasg 14413 rlmplusgg 14414 rlm0g 14415 rlmmulrg 14417 rlmscabas 14418 rlmvscag 14419 rlmtopng 14420 rlmdsg 14421 restopn2 14851 negcncf 15273 mulcncf 15276 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvaddxxbr 15369 dvmulxxbr 15370 dvcoapbr 15375 dvcjbr 15376 dvexp 15379 dvrecap 15381 dvmptcmulcn 15389 dvmptnegcn 15390 dvmptsubcn 15391 dveflem 15394 dvef 15395 ifpsnprss 16040 bj-charfundcALT 16130 |
| Copyright terms: Public domain | W3C validator |