ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssidd Unicode version

Theorem ssidd 3118
Description: Weakening of ssid 3117. (Contributed by BJ, 1-Sep-2022.)
Assertion
Ref Expression
ssidd  |-  ( ph  ->  A  C_  A )

Proof of Theorem ssidd
StepHypRef Expression
1 ssid 3117 . 2  |-  A  C_  A
21a1i 9 1  |-  ( ph  ->  A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-in 3077  df-ss 3084
This theorem is referenced by:  isum  11166  fsum3ser  11178  fsumcl  11181  ennnfoneleminc  11935  restopn2  12366  negcncf  12771  mulcncf  12774  dvidlemap  12843  dvaddxxbr  12848  dvmulxxbr  12849  dvcoapbr  12854  dvcjbr  12855  dvexp  12858  dvrecap  12860  dvmptcmulcn  12866  dvmptnegcn  12867  dvmptsubcn  12868  dveflem  12870  dvef  12871
  Copyright terms: Public domain W3C validator