| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | Unicode version | ||
| Description: Weakening of ssid 3217. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3217 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: swrd0g 11136 isum 11771 fsum3ser 11783 fsumcl 11786 iprodap 11966 iprodap0 11968 fprodssdc 11976 fprodcl 11993 fprodclf 12021 ennnfoneleminc 12857 submid 13384 mulgnncl 13548 mulgnn0cl 13549 mulgcl 13550 subgid 13586 ablressid 13746 gsumfzreidx 13748 rngressid 13791 ringressid 13900 mulgass3 13922 subrngid 14038 lss1 14199 rlmfn 14290 rlmvalg 14291 rlmbasg 14292 rlmplusgg 14293 rlm0g 14294 rlmmulrg 14296 rlmscabas 14297 rlmvscag 14298 rlmtopng 14299 rlmdsg 14300 restopn2 14730 negcncf 15152 mulcncf 15155 dvidlemap 15238 dvidrelem 15239 dvidsslem 15240 dvaddxxbr 15248 dvmulxxbr 15249 dvcoapbr 15254 dvcjbr 15255 dvexp 15258 dvrecap 15260 dvmptcmulcn 15268 dvmptnegcn 15269 dvmptsubcn 15270 dveflem 15273 dvef 15274 bj-charfundcALT 15883 |
| Copyright terms: Public domain | W3C validator |