| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | GIF version | ||
| Description: Weakening of ssid 3204. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: isum 11569 fsum3ser 11581 fsumcl 11584 iprodap 11764 iprodap0 11766 fprodssdc 11774 fprodcl 11791 fprodclf 11819 ennnfoneleminc 12655 submid 13181 mulgnncl 13345 mulgnn0cl 13346 mulgcl 13347 subgid 13383 ablressid 13543 gsumfzreidx 13545 rngressid 13588 ringressid 13697 mulgass3 13719 subrngid 13835 lss1 13996 rlmfn 14087 rlmvalg 14088 rlmbasg 14089 rlmplusgg 14090 rlm0g 14091 rlmmulrg 14093 rlmscabas 14094 rlmvscag 14095 rlmtopng 14096 rlmdsg 14097 restopn2 14505 negcncf 14927 mulcncf 14930 dvidlemap 15013 dvidrelem 15014 dvidsslem 15015 dvaddxxbr 15023 dvmulxxbr 15024 dvcoapbr 15029 dvcjbr 15030 dvexp 15033 dvrecap 15035 dvmptcmulcn 15043 dvmptnegcn 15044 dvmptsubcn 15045 dveflem 15048 dvef 15049 bj-charfundcALT 15541 |
| Copyright terms: Public domain | W3C validator |