Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssidd | GIF version |
Description: Weakening of ssid 3162. (Contributed by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: isum 11326 fsum3ser 11338 fsumcl 11341 iprodap 11521 iprodap0 11523 fprodssdc 11531 fprodcl 11548 fprodclf 11576 ennnfoneleminc 12344 restopn2 12823 negcncf 13228 mulcncf 13231 dvidlemap 13300 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 dvcjbr 13312 dvexp 13315 dvrecap 13317 dvmptcmulcn 13323 dvmptnegcn 13324 dvmptsubcn 13325 dveflem 13327 dvef 13328 bj-charfundcALT 13691 |
Copyright terms: Public domain | W3C validator |