![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssidd | GIF version |
Description: Weakening of ssid 3059. (Contributed by BJ, 1-Sep-2022.) |
Ref | Expression |
---|---|
ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3059 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3013 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-11 1449 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-in 3019 df-ss 3026 |
This theorem is referenced by: isum 10943 fsum3ser 10955 fsumcl 10958 restopn2 12050 |
Copyright terms: Public domain | W3C validator |