| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | GIF version | ||
| Description: Weakening of ssid 3214. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3214 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: swrd0g 11121 isum 11740 fsum3ser 11752 fsumcl 11755 iprodap 11935 iprodap0 11937 fprodssdc 11945 fprodcl 11962 fprodclf 11990 ennnfoneleminc 12826 submid 13353 mulgnncl 13517 mulgnn0cl 13518 mulgcl 13519 subgid 13555 ablressid 13715 gsumfzreidx 13717 rngressid 13760 ringressid 13869 mulgass3 13891 subrngid 14007 lss1 14168 rlmfn 14259 rlmvalg 14260 rlmbasg 14261 rlmplusgg 14262 rlm0g 14263 rlmmulrg 14265 rlmscabas 14266 rlmvscag 14267 rlmtopng 14268 rlmdsg 14269 restopn2 14699 negcncf 15121 mulcncf 15124 dvidlemap 15207 dvidrelem 15208 dvidsslem 15209 dvaddxxbr 15217 dvmulxxbr 15218 dvcoapbr 15223 dvcjbr 15224 dvexp 15227 dvrecap 15229 dvmptcmulcn 15237 dvmptnegcn 15238 dvmptsubcn 15239 dveflem 15242 dvef 15243 bj-charfundcALT 15819 |
| Copyright terms: Public domain | W3C validator |