| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | GIF version | ||
| Description: Weakening of ssid 3244. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: swrd0g 11200 isum 11904 fsum3ser 11916 fsumcl 11919 iprodap 12099 iprodap0 12101 fprodssdc 12109 fprodcl 12126 fprodclf 12154 ennnfoneleminc 12990 submid 13518 mulgnncl 13682 mulgnn0cl 13683 mulgcl 13684 subgid 13720 ablressid 13880 gsumfzreidx 13882 rngressid 13925 ringressid 14034 mulgass3 14056 subrngid 14173 lss1 14334 rlmfn 14425 rlmvalg 14426 rlmbasg 14427 rlmplusgg 14428 rlm0g 14429 rlmmulrg 14431 rlmscabas 14432 rlmvscag 14433 rlmtopng 14434 rlmdsg 14435 restopn2 14865 negcncf 15287 mulcncf 15290 dvidlemap 15373 dvidrelem 15374 dvidsslem 15375 dvaddxxbr 15383 dvmulxxbr 15384 dvcoapbr 15389 dvcjbr 15390 dvexp 15393 dvrecap 15395 dvmptcmulcn 15403 dvmptnegcn 15404 dvmptsubcn 15405 dveflem 15408 dvef 15409 ifpsnprss 16064 bj-charfundcALT 16196 |
| Copyright terms: Public domain | W3C validator |