| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | GIF version | ||
| Description: Weakening of ssid 3224. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3224 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: swrd0g 11158 isum 11862 fsum3ser 11874 fsumcl 11877 iprodap 12057 iprodap0 12059 fprodssdc 12067 fprodcl 12084 fprodclf 12112 ennnfoneleminc 12948 submid 13476 mulgnncl 13640 mulgnn0cl 13641 mulgcl 13642 subgid 13678 ablressid 13838 gsumfzreidx 13840 rngressid 13883 ringressid 13992 mulgass3 14014 subrngid 14130 lss1 14291 rlmfn 14382 rlmvalg 14383 rlmbasg 14384 rlmplusgg 14385 rlm0g 14386 rlmmulrg 14388 rlmscabas 14389 rlmvscag 14390 rlmtopng 14391 rlmdsg 14392 restopn2 14822 negcncf 15244 mulcncf 15247 dvidlemap 15330 dvidrelem 15331 dvidsslem 15332 dvaddxxbr 15340 dvmulxxbr 15341 dvcoapbr 15346 dvcjbr 15347 dvexp 15350 dvrecap 15352 dvmptcmulcn 15360 dvmptnegcn 15361 dvmptsubcn 15362 dveflem 15365 dvef 15366 bj-charfundcALT 16082 |
| Copyright terms: Public domain | W3C validator |