| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssidd | GIF version | ||
| Description: Weakening of ssid 3204. (Contributed by BJ, 1-Sep-2022.) |
| Ref | Expression |
|---|---|
| ssidd | ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: isum 11567 fsum3ser 11579 fsumcl 11582 iprodap 11762 iprodap0 11764 fprodssdc 11772 fprodcl 11789 fprodclf 11817 ennnfoneleminc 12653 submid 13179 mulgnncl 13343 mulgnn0cl 13344 mulgcl 13345 subgid 13381 ablressid 13541 gsumfzreidx 13543 rngressid 13586 ringressid 13695 mulgass3 13717 subrngid 13833 lss1 13994 rlmfn 14085 rlmvalg 14086 rlmbasg 14087 rlmplusgg 14088 rlm0g 14089 rlmmulrg 14091 rlmscabas 14092 rlmvscag 14093 rlmtopng 14094 rlmdsg 14095 restopn2 14503 negcncf 14925 mulcncf 14928 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvaddxxbr 15021 dvmulxxbr 15022 dvcoapbr 15027 dvcjbr 15028 dvexp 15031 dvrecap 15033 dvmptcmulcn 15041 dvmptnegcn 15042 dvmptsubcn 15043 dveflem 15046 dvef 15047 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |