ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgcl Unicode version

Theorem mulgcl 13590
Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnncl.b  |-  B  =  ( Base `  G
)
mulgnncl.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgcl  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )

Proof of Theorem mulgcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnncl.b . 2  |-  B  =  ( Base `  G
)
2 mulgnncl.t . 2  |-  .x.  =  (.g
`  G )
3 eqid 2207 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 id 19 . 2  |-  ( G  e.  Grp  ->  G  e.  Grp )
5 ssidd 3222 . 2  |-  ( G  e.  Grp  ->  B  C_  B )
61, 3grpcl 13455 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
7 eqid 2207 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
81, 7grpidcl 13476 . 2  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
9 eqid 2207 . 2  |-  ( invg `  G )  =  ( invg `  G )
101, 9grpinvcl 13495 . 2  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( invg `  G ) `  x
)  e.  B )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mulgsubcl 13587 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   ZZcz 9407   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448  .gcmg 13570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mulg 13571
This theorem is referenced by:  mulgneg  13591  mulgnegneg  13592  mulgcld  13595  mulgaddcomlem  13596  mulgaddcom  13597  mulginvcom  13598  mulgdirlem  13604  mulgdir  13605  mulgass  13610  mulgmodid  13612  mulgsubdir  13613  ghmmulg  13707  mulgass2  13935  mulgghm2  14485
  Copyright terms: Public domain W3C validator