ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringressid Unicode version

Theorem ringressid 13619
Description: A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
ringressid.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
ringressid  |-  ( G  e.  Ring  ->  ( Gs  B )  e.  Ring )

Proof of Theorem ringressid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . 3  |-  ( G  e.  Ring  ->  ( Gs  B )  =  ( Gs  B ) )
2 ringressid.b . . . 4  |-  B  =  ( Base `  G
)
32a1i 9 . . 3  |-  ( G  e.  Ring  ->  B  =  ( Base `  G
) )
4 id 19 . . 3  |-  ( G  e.  Ring  ->  G  e. 
Ring )
5 ssidd 3204 . . 3  |-  ( G  e.  Ring  ->  B  C_  B )
61, 3, 4, 5ressbas2d 12746 . 2  |-  ( G  e.  Ring  ->  B  =  ( Base `  ( Gs  B ) ) )
7 eqidd 2197 . . 3  |-  ( G  e.  Ring  ->  ( +g  `  G )  =  ( +g  `  G ) )
8 basfn 12736 . . . . 5  |-  Base  Fn  _V
9 elex 2774 . . . . 5  |-  ( G  e.  Ring  ->  G  e. 
_V )
10 funfvex 5575 . . . . . 6  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5358 . . . . 5  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . 4  |-  ( G  e.  Ring  ->  ( Base `  G )  e.  _V )
132, 12eqeltrid 2283 . . 3  |-  ( G  e.  Ring  ->  B  e. 
_V )
141, 7, 13, 4ressplusgd 12806 . 2  |-  ( G  e.  Ring  ->  ( +g  `  G )  =  ( +g  `  ( Gs  B ) ) )
15 eqid 2196 . . . 4  |-  ( Gs  B )  =  ( Gs  B )
16 eqid 2196 . . . 4  |-  ( .r
`  G )  =  ( .r `  G
)
1715, 16ressmulrg 12822 . . 3  |-  ( ( B  e.  _V  /\  G  e.  Ring )  -> 
( .r `  G
)  =  ( .r
`  ( Gs  B ) ) )
1813, 17mpancom 422 . 2  |-  ( G  e.  Ring  ->  ( .r
`  G )  =  ( .r `  ( Gs  B ) ) )
19 ringgrp 13557 . . 3  |-  ( G  e.  Ring  ->  G  e. 
Grp )
202grpressid 13193 . . 3  |-  ( G  e.  Grp  ->  ( Gs  B )  e.  Grp )
2119, 20syl 14 . 2  |-  ( G  e.  Ring  ->  ( Gs  B )  e.  Grp )
222, 16ringcl 13569 . 2  |-  ( ( G  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  G ) y )  e.  B )
232, 16ringass 13572 . 2  |-  ( ( G  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( .r `  G ) y ) ( .r `  G
) z )  =  ( x ( .r
`  G ) ( y ( .r `  G ) z ) ) )
24 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
252, 24, 16ringdi 13574 . 2  |-  ( ( G  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x
( .r `  G
) ( y ( +g  `  G ) z ) )  =  ( ( x ( .r `  G ) y ) ( +g  `  G ) ( x ( .r `  G
) z ) ) )
262, 24, 16ringdir 13575 . 2  |-  ( ( G  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x ( +g  `  G
) y ) ( .r `  G ) z )  =  ( ( x ( .r
`  G ) z ) ( +g  `  G
) ( y ( .r `  G ) z ) ) )
27 eqid 2196 . . 3  |-  ( 1r
`  G )  =  ( 1r `  G
)
282, 27ringidcl 13576 . 2  |-  ( G  e.  Ring  ->  ( 1r
`  G )  e.  B )
292, 16, 27ringlidm 13579 . 2  |-  ( ( G  e.  Ring  /\  x  e.  B )  ->  (
( 1r `  G
) ( .r `  G ) x )  =  x )
302, 16, 27ringridm 13580 . 2  |-  ( ( G  e.  Ring  /\  x  e.  B )  ->  (
x ( .r `  G ) ( 1r
`  G ) )  =  x )
316, 14, 18, 21, 22, 23, 25, 26, 28, 29, 30isringd 13597 1  |-  ( G  e.  Ring  ->  ( Gs  B )  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   .rcmulr 12756   Grpcgrp 13132   1rcur 13515   Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by:  subrgid  13779
  Copyright terms: Public domain W3C validator