ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iprodap Unicode version

Theorem iprodap 11583
Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
Hypotheses
Ref Expression
zprod.1  |-  Z  =  ( ZZ>= `  M )
zprod.2  |-  ( ph  ->  M  e.  ZZ )
zproddc.3  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
iprod.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
iprod.5  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
Assertion
Ref Expression
iprodap  |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
Distinct variable groups:    B, n, y   
k, F    k, M, n, y    k, Z, n, y    ph, k, n, y
Allowed substitution hints:    B( k)    F( y, n)

Proof of Theorem iprodap
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 zprod.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 zprod.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 zproddc.3 . 2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
4 ssidd 3176 . 2  |-  ( ph  ->  Z  C_  Z )
5 orc 712 . . . . 5  |-  ( j  e.  Z  ->  (
j  e.  Z  \/  -.  j  e.  Z
) )
65adantl 277 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  e.  Z  \/  -.  j  e.  Z
) )
7 df-dc 835 . . . 4  |-  (DECID  j  e.  Z  <->  ( j  e.  Z  \/  -.  j  e.  Z ) )
86, 7sylibr 134 . . 3  |-  ( (
ph  /\  j  e.  Z )  -> DECID  j  e.  Z
)
98ralrimiva 2550 . 2  |-  ( ph  ->  A. j  e.  Z DECID  j  e.  Z )
10 iprod.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
11 iftrue 3539 . . . 4  |-  ( k  e.  Z  ->  if ( k  e.  Z ,  B ,  1 )  =  B )
1211adantl 277 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  Z ,  B ,  1 )  =  B )
1310, 12eqtr4d 2213 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  Z ,  B , 
1 ) )
14 iprod.5 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
151, 2, 3, 4, 9, 13, 14zproddc 11582 1  |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   ifcif 3534   class class class wbr 4003   ` cfv 5216   CCcc 7808   0cc0 7810   1c1 7811    x. cmul 7815   # cap 8536   ZZcz 9251   ZZ>=cuz 9526    seqcseq 10442    ~~> cli 11281   prod_cprod 11553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-fz 10007  df-fzo 10140  df-seqfrec 10443  df-exp 10517  df-ihash 10751  df-cj 10846  df-rsqrt 11002  df-abs 11003  df-clim 11282  df-proddc 11554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator