| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submid | Unicode version | ||
| Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| submss.b |
|
| Ref | Expression |
|---|---|
| submid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3205 |
. 2
| |
| 2 | submss.b |
. . 3
| |
| 3 | eqid 2196 |
. . 3
| |
| 4 | 2, 3 | mndidcl 13081 |
. 2
|
| 5 | eqid 2196 |
. . . . 5
| |
| 6 | 2, 5 | mndcl 13074 |
. . . 4
|
| 7 | 6 | 3expb 1206 |
. . 3
|
| 8 | 7 | ralrimivva 2579 |
. 2
|
| 9 | 2, 3, 5 | issubm 13114 |
. 2
|
| 10 | 1, 4, 8, 9 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5878 df-ov 5926 df-inn 8993 df-2 9051 df-ndx 12691 df-slot 12692 df-base 12694 df-plusg 12778 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-submnd 13102 |
| This theorem is referenced by: gsumwcl 13139 |
| Copyright terms: Public domain | W3C validator |