ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submid Unicode version

Theorem submid 13496
Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Hypothesis
Ref Expression
submss.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
submid  |-  ( M  e.  Mnd  ->  B  e.  (SubMnd `  M )
)

Proof of Theorem submid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3245 . 2  |-  ( M  e.  Mnd  ->  B  C_  B )
2 submss.b . . 3  |-  B  =  ( Base `  M
)
3 eqid 2229 . . 3  |-  ( 0g
`  M )  =  ( 0g `  M
)
42, 3mndidcl 13449 . 2  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
5 eqid 2229 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
62, 5mndcl 13442 . . . 4  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
763expb 1228 . . 3  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
87ralrimivva 2612 . 2  |-  ( M  e.  Mnd  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  M ) y )  e.  B
)
92, 3, 5issubm 13491 . 2  |-  ( M  e.  Mnd  ->  ( B  e.  (SubMnd `  M
)  <->  ( B  C_  B  /\  ( 0g `  M )  e.  B  /\  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  e.  B ) ) )
101, 4, 8, 9mpbir3and 1204 1  |-  ( M  e.  Mnd  ->  B  e.  (SubMnd `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   Mndcmnd 13435  SubMndcsubmnd 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-submnd 13479
This theorem is referenced by:  gsumwcl  13516
  Copyright terms: Public domain W3C validator