ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssntr GIF version

Theorem ssntr 14790
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ssntr (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3387 . . . . 5 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂𝐽𝑂 ∈ 𝒫 𝑆))
2 elpwg 3657 . . . . . 6 (𝑂𝐽 → (𝑂 ∈ 𝒫 𝑆𝑂𝑆))
32pm5.32i 454 . . . . 5 ((𝑂𝐽𝑂 ∈ 𝒫 𝑆) ↔ (𝑂𝐽𝑂𝑆))
41, 3bitr2i 185 . . . 4 ((𝑂𝐽𝑂𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆))
5 elssuni 3915 . . . 4 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
64, 5sylbi 121 . . 3 ((𝑂𝐽𝑂𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
76adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
8 clscld.1 . . . 4 𝑋 = 𝐽
98ntrval 14778 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
109adantr 276 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
117, 10sseqtrrd 3263 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cin 3196  wss 3197  𝒫 cpw 3649   cuni 3887  cfv 5317  Topctop 14665  intcnt 14761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-top 14666  df-ntr 14764
This theorem is referenced by:  ntrin  14792  neiint  14813  cnntri  14892
  Copyright terms: Public domain W3C validator