![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssntr | GIF version |
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ssntr | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3198 | . . . . 5 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆)) | |
2 | elpwg 3457 | . . . . . 6 ⊢ (𝑂 ∈ 𝐽 → (𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆)) | |
3 | 2 | pm5.32i 443 | . . . . 5 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆) ↔ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) |
4 | 1, 3 | bitr2i 184 | . . . 4 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆)) |
5 | elssuni 3703 | . . . 4 ⊢ (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) | |
6 | 4, 5 | sylbi 120 | . . 3 ⊢ ((𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
7 | 6 | adantl 272 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
8 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
9 | 8 | ntrval 11962 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
10 | 9 | adantr 271 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
11 | 7, 10 | sseqtr4d 3078 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∩ cin 3012 ⊆ wss 3013 𝒫 cpw 3449 ∪ cuni 3675 ‘cfv 5049 Topctop 11848 intcnt 11945 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-top 11849 df-ntr 11948 |
This theorem is referenced by: ntrin 11976 neiint 11997 cnntri 12075 |
Copyright terms: Public domain | W3C validator |