ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssntr GIF version

Theorem ssntr 14512
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ssntr (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3355 . . . . 5 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) ↔ (𝑂𝐽𝑂 ∈ 𝒫 𝑆))
2 elpwg 3623 . . . . . 6 (𝑂𝐽 → (𝑂 ∈ 𝒫 𝑆𝑂𝑆))
32pm5.32i 454 . . . . 5 ((𝑂𝐽𝑂 ∈ 𝒫 𝑆) ↔ (𝑂𝐽𝑂𝑆))
41, 3bitr2i 185 . . . 4 ((𝑂𝐽𝑂𝑆) ↔ 𝑂 ∈ (𝐽 ∩ 𝒫 𝑆))
5 elssuni 3877 . . . 4 (𝑂 ∈ (𝐽 ∩ 𝒫 𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
64, 5sylbi 121 . . 3 ((𝑂𝐽𝑂𝑆) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
76adantl 277 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 (𝐽 ∩ 𝒫 𝑆))
8 clscld.1 . . . 4 𝑋 = 𝐽
98ntrval 14500 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
109adantr 276 . 2 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
117, 10sseqtrrd 3231 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑂𝐽𝑂𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cin 3164  wss 3165  𝒫 cpw 3615   cuni 3849  cfv 5268  Topctop 14387  intcnt 14483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-top 14388  df-ntr 14486
This theorem is referenced by:  ntrin  14514  neiint  14535  cnntri  14614
  Copyright terms: Public domain W3C validator