ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrest Unicode version

Theorem elrest 12857
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem elrest
StepHypRef Expression
1 restval 12856 . . 3  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( Jt  B )  =  ran  ( x  e.  J  |->  ( x  i^i  B
) ) )
21eleq2d 2263 . 2  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  A  e.  ran  ( x  e.  J  |->  ( x  i^i  B
) ) ) )
3 eqid 2193 . . 3  |-  ( x  e.  J  |->  ( x  i^i  B ) )  =  ( x  e.  J  |->  ( x  i^i 
B ) )
4 vex 2763 . . . 4  |-  x  e. 
_V
54inex1 4163 . . 3  |-  ( x  i^i  B )  e. 
_V
63, 5elrnmpti 4915 . 2  |-  ( A  e.  ran  ( x  e.  J  |->  ( x  i^i  B ) )  <->  E. x  e.  J  A  =  ( x  i^i  B ) )
72, 6bitrdi 196 1  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    i^i cin 3152    |-> cmpt 4090   ran crn 4660  (class class class)co 5918   ↾t crest 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-rest 12852
This theorem is referenced by:  elrestr  12858  restsspw  12860  restbasg  14336  restsn  14348  restopnb  14349  ssrest  14350  cnrest2  14404  cnptopresti  14406  cnptoprest  14407  cnptoprest2  14408  lmss  14414  txrest  14444  metrest  14674
  Copyright terms: Public domain W3C validator