ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrest Unicode version

Theorem elrest 12563
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem elrest
StepHypRef Expression
1 restval 12562 . . 3  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( Jt  B )  =  ran  ( x  e.  J  |->  ( x  i^i  B
) ) )
21eleq2d 2236 . 2  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  A  e.  ran  ( x  e.  J  |->  ( x  i^i  B
) ) ) )
3 eqid 2165 . . 3  |-  ( x  e.  J  |->  ( x  i^i  B ) )  =  ( x  e.  J  |->  ( x  i^i 
B ) )
4 vex 2729 . . . 4  |-  x  e. 
_V
54inex1 4116 . . 3  |-  ( x  i^i  B )  e. 
_V
63, 5elrnmpti 4857 . 2  |-  ( A  e.  ran  ( x  e.  J  |->  ( x  i^i  B ) )  <->  E. x  e.  J  A  =  ( x  i^i  B ) )
72, 6bitrdi 195 1  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    i^i cin 3115    |-> cmpt 4043   ran crn 4605  (class class class)co 5842   ↾t crest 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-rest 12558
This theorem is referenced by:  elrestr  12564  restsspw  12566  restbasg  12808  restsn  12820  restopnb  12821  ssrest  12822  cnrest2  12876  cnptopresti  12878  cnptoprest  12879  cnptoprest2  12880  lmss  12886  txrest  12916  metrest  13146
  Copyright terms: Public domain W3C validator