ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrest Unicode version

Theorem elrest 12615
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
elrest  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem elrest
StepHypRef Expression
1 restval 12614 . . 3  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( Jt  B )  =  ran  ( x  e.  J  |->  ( x  i^i  B
) ) )
21eleq2d 2245 . 2  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  A  e.  ran  ( x  e.  J  |->  ( x  i^i  B
) ) ) )
3 eqid 2175 . . 3  |-  ( x  e.  J  |->  ( x  i^i  B ) )  =  ( x  e.  J  |->  ( x  i^i 
B ) )
4 vex 2738 . . . 4  |-  x  e. 
_V
54inex1 4132 . . 3  |-  ( x  i^i  B )  e. 
_V
63, 5elrnmpti 4873 . 2  |-  ( A  e.  ran  ( x  e.  J  |->  ( x  i^i  B ) )  <->  E. x  e.  J  A  =  ( x  i^i  B ) )
72, 6bitrdi 196 1  |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   E.wrex 2454    i^i cin 3126    |-> cmpt 4059   ran crn 4621  (class class class)co 5865   ↾t crest 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-rest 12610
This theorem is referenced by:  elrestr  12616  restsspw  12618  restbasg  13219  restsn  13231  restopnb  13232  ssrest  13233  cnrest2  13287  cnptopresti  13289  cnptoprest  13290  cnptoprest2  13291  lmss  13297  txrest  13327  metrest  13557
  Copyright terms: Public domain W3C validator