ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan2d Unicode version

Theorem subcan2d 8424
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
subcan2d.4  |-  ( ph  ->  ( A  -  C
)  =  ( B  -  C ) )
Assertion
Ref Expression
subcan2d  |-  ( ph  ->  A  =  B )

Proof of Theorem subcan2d
StepHypRef Expression
1 subcan2d.4 . 2  |-  ( ph  ->  ( A  -  C
)  =  ( B  -  C ) )
2 negidd.1 . . 3  |-  ( ph  ->  A  e.  CC )
3 pncand.2 . . 3  |-  ( ph  ->  B  e.  CC )
4 subaddd.3 . . 3  |-  ( ph  ->  C  e.  CC )
5 subcan2 8296 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )
62, 3, 4, 5syl3anc 1249 . 2  |-  ( ph  ->  ( ( A  -  C )  =  ( B  -  C )  <-> 
A  =  B ) )
71, 6mpbid 147 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922    - cmin 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244
This theorem is referenced by:  iseqf1olemab  10645  4sqlem10  12652
  Copyright terms: Public domain W3C validator