ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan2d Unicode version

Theorem subcan2d 8207
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
subcan2d.4  |-  ( ph  ->  ( A  -  C
)  =  ( B  -  C ) )
Assertion
Ref Expression
subcan2d  |-  ( ph  ->  A  =  B )

Proof of Theorem subcan2d
StepHypRef Expression
1 subcan2d.4 . 2  |-  ( ph  ->  ( A  -  C
)  =  ( B  -  C ) )
2 negidd.1 . . 3  |-  ( ph  ->  A  e.  CC )
3 pncand.2 . . 3  |-  ( ph  ->  B  e.  CC )
4 subaddd.3 . . 3  |-  ( ph  ->  C  e.  CC )
5 subcan2 8079 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )
62, 3, 4, 5syl3anc 1217 . 2  |-  ( ph  ->  ( ( A  -  C )  =  ( B  -  C )  <-> 
A  =  B ) )
71, 6mpbid 146 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 2125  (class class class)co 5814   CCcc 7709    - cmin 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-setind 4490  ax-resscn 7803  ax-1cn 7804  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-sub 8027
This theorem is referenced by:  iseqf1olemab  10366
  Copyright terms: Public domain W3C validator