ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcand Unicode version

Theorem subcand 8426
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
subcand.4  |-  ( ph  ->  ( A  -  B
)  =  ( A  -  C ) )
Assertion
Ref Expression
subcand  |-  ( ph  ->  B  =  C )

Proof of Theorem subcand
StepHypRef Expression
1 subcand.4 . 2  |-  ( ph  ->  ( A  -  B
)  =  ( A  -  C ) )
2 negidd.1 . . 3  |-  ( ph  ->  A  e.  CC )
3 pncand.2 . . 3  |-  ( ph  ->  B  e.  CC )
4 subaddd.3 . . 3  |-  ( ph  ->  C  e.  CC )
5 subcan 8329 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  ( A  -  C )  <->  B  =  C ) )
62, 3, 4, 5syl3anc 1250 . 2  |-  ( ph  ->  ( ( A  -  B )  =  ( A  -  C )  <-> 
B  =  C ) )
71, 6mpbid 147 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176  (class class class)co 5946   CCcc 7925    - cmin 8245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247
This theorem is referenced by:  4sqlemffi  12752  gausslemma2dlem1f1o  15570
  Copyright terms: Public domain W3C validator