ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan2 Unicode version

Theorem subcan2 8297
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
Assertion
Ref Expression
subcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )

Proof of Theorem subcan2
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp3 1002 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 subcl 8271 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
433adant1 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
5 subadd2 8276 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  ( B  -  C )  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  ( ( B  -  C )  +  C )  =  A ) )
61, 2, 4, 5syl3anc 1250 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  ( ( B  -  C )  +  C )  =  A ) )
7 npcan 8281 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  C
)  =  B )
873adant1 1018 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  C )  =  B )
98eqeq1d 2214 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( B  -  C )  +  C
)  =  A  <->  B  =  A ) )
10 eqcom 2207 . . 3  |-  ( B  =  A  <->  A  =  B )
119, 10bitrdi 196 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( B  -  C )  +  C
)  =  A  <->  A  =  B ) )
126, 11bitrd 188 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928    - cmin 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245
This theorem is referenced by:  subeq0  8298  subcan2i  8366  subcan2d  8425  subcan2ad  8428  zextlt  9465
  Copyright terms: Public domain W3C validator