ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan2 Unicode version

Theorem subcan2 8332
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
Assertion
Ref Expression
subcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )

Proof of Theorem subcan2
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp3 1002 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 subcl 8306 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
433adant1 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
5 subadd2 8311 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  ( B  -  C )  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  ( ( B  -  C )  +  C )  =  A ) )
61, 2, 4, 5syl3anc 1250 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  ( ( B  -  C )  +  C )  =  A ) )
7 npcan 8316 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  C
)  =  B )
873adant1 1018 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  C )  =  B )
98eqeq1d 2216 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( B  -  C )  +  C
)  =  A  <->  B  =  A ) )
10 eqcom 2209 . . 3  |-  ( B  =  A  <->  A  =  B )
119, 10bitrdi 196 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( B  -  C )  +  C
)  =  A  <->  A  =  B ) )
126, 11bitrd 188 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
)  =  ( B  -  C )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    + caddc 7963    - cmin 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280
This theorem is referenced by:  subeq0  8333  subcan2i  8401  subcan2d  8460  subcan2ad  8463  zextlt  9500
  Copyright terms: Public domain W3C validator