ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi Unicode version

Theorem 4sqlemffi 12590
Description: Lemma for 4sq 12604.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlemffi  |-  ( ph  ->  ran  F  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    v, P    ph, v
Allowed substitution hints:    A( u, m)    F( v, u, m)    N( v)

Proof of Theorem 4sqlemffi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
21funmpt2 5298 . . 3  |-  Fun  F
3 funrel 5276 . . 3  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . 2  |-  Rel  F
5 4sqlemafi.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
65nnzd 9464 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7 peano2zm 9381 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
10 4sqlemafi.a . . . . . . . . 9  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
12 elfzelz 10117 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1312adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
14 zsqcl 10719 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1513, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
165adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
1715, 16zmodcld 10454 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
1817nn0zd 9463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
2011, 19eqeltrd 2273 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
2120rexlimdva2 2617 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
2221abssdv 3258 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
2310, 22eqsstrid 3230 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
2423sselda 3184 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
259, 24zsubcld 9470 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
2625ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. v  e.  A  ( ( P  - 
1 )  -  v
)  e.  ZZ )
278zcnd 9466 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  ( P  -  1 )  e.  CC )
2924adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
v  e.  ZZ )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  ZZ )
3130zcnd 9466 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  CC )
3223adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  A  C_  ZZ )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  A )
3432, 33sseldd 3185 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  ZZ )
3534zcnd 9466 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  CC )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  x  e.  CC )
37 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
3828, 31, 36, 37subcand 8395 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  =  x )
3938ex 115 . . . . . 6  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
4039ralrimivva 2579 . . . . 5  |-  ( ph  ->  A. v  e.  A  A. x  e.  A  ( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
41 oveq2 5933 . . . . . 6  |-  ( v  =  x  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
421, 41f1mpt 5821 . . . . 5  |-  ( F : A -1-1-> ZZ  <->  ( A. v  e.  A  (
( P  -  1 )  -  v )  e.  ZZ  /\  A. v  e.  A  A. x  e.  A  (
( ( P  - 
1 )  -  v
)  =  ( ( P  -  1 )  -  x )  -> 
v  =  x ) ) )
4326, 40, 42sylanbrc 417 . . . 4  |-  ( ph  ->  F : A -1-1-> ZZ )
44 df-f1 5264 . . . 4  |-  ( F : A -1-1-> ZZ  <->  ( F : A --> ZZ  /\  Fun  `' F ) )
4543, 44sylib 122 . . 3  |-  ( ph  ->  ( F : A --> ZZ  /\  Fun  `' F
) )
4645simprd 114 . 2  |-  ( ph  ->  Fun  `' F )
471, 25dmmptd 5391 . . . 4  |-  ( ph  ->  dom  F  =  A )
48 4sqlemafi.n . . . . 5  |-  ( ph  ->  N  e.  NN )
4948, 5, 104sqlemafi 12589 . . . 4  |-  ( ph  ->  A  e.  Fin )
5047, 49eqeltrd 2273 . . 3  |-  ( ph  ->  dom  F  e.  Fin )
51 fundmfibi 7013 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
522, 51ax-mp 5 . . 3  |-  ( F  e.  Fin  <->  dom  F  e. 
Fin )
5350, 52sylibr 134 . 2  |-  ( ph  ->  F  e.  Fin )
54 funrnfi 7017 . 2  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
554, 46, 53, 54mp3an2i 1353 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476    C_ wss 3157    |-> cmpt 4095   `'ccnv 4663   dom cdm 4664   ran crn 4665   Rel wrel 4669   Fun wfun 5253   -->wf 5255   -1-1->wf1 5256  (class class class)co 5925   Fincfn 6808   CCcc 7894   0cc0 7896   1c1 7897    - cmin 8214   NNcn 9007   2c2 9058   ZZcz 9343   ...cfz 10100    mod cmo 10431   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  4sqlem11  12595
  Copyright terms: Public domain W3C validator