ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi Unicode version

Theorem 4sqlemffi 12431
Description: Lemma for 4sq 12445.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlemffi  |-  ( ph  ->  ran  F  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    v, P    ph, v
Allowed substitution hints:    A( u, m)    F( v, u, m)    N( v)

Proof of Theorem 4sqlemffi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
21funmpt2 5274 . . 3  |-  Fun  F
3 funrel 5252 . . 3  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . 2  |-  Rel  F
5 4sqlemafi.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
65nnzd 9405 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7 peano2zm 9322 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
10 4sqlemafi.a . . . . . . . . 9  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
12 elfzelz 10057 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1312adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
14 zsqcl 10625 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1513, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
165adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
1715, 16zmodcld 10378 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
1817nn0zd 9404 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
2011, 19eqeltrd 2266 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
2120rexlimdva2 2610 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
2221abssdv 3244 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
2310, 22eqsstrid 3216 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
2423sselda 3170 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
259, 24zsubcld 9411 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
2625ralrimiva 2563 . . . . 5  |-  ( ph  ->  A. v  e.  A  ( ( P  - 
1 )  -  v
)  e.  ZZ )
278zcnd 9407 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  ( P  -  1 )  e.  CC )
2924adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
v  e.  ZZ )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  ZZ )
3130zcnd 9407 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  CC )
3223adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  A  C_  ZZ )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  A )
3432, 33sseldd 3171 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  ZZ )
3534zcnd 9407 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  CC )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  x  e.  CC )
37 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
3828, 31, 36, 37subcand 8340 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  =  x )
3938ex 115 . . . . . 6  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
4039ralrimivva 2572 . . . . 5  |-  ( ph  ->  A. v  e.  A  A. x  e.  A  ( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
41 oveq2 5905 . . . . . 6  |-  ( v  =  x  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
421, 41f1mpt 5793 . . . . 5  |-  ( F : A -1-1-> ZZ  <->  ( A. v  e.  A  (
( P  -  1 )  -  v )  e.  ZZ  /\  A. v  e.  A  A. x  e.  A  (
( ( P  - 
1 )  -  v
)  =  ( ( P  -  1 )  -  x )  -> 
v  =  x ) ) )
4326, 40, 42sylanbrc 417 . . . 4  |-  ( ph  ->  F : A -1-1-> ZZ )
44 df-f1 5240 . . . 4  |-  ( F : A -1-1-> ZZ  <->  ( F : A --> ZZ  /\  Fun  `' F ) )
4543, 44sylib 122 . . 3  |-  ( ph  ->  ( F : A --> ZZ  /\  Fun  `' F
) )
4645simprd 114 . 2  |-  ( ph  ->  Fun  `' F )
471, 25dmmptd 5365 . . . 4  |-  ( ph  ->  dom  F  =  A )
48 4sqlemafi.n . . . . 5  |-  ( ph  ->  N  e.  NN )
4948, 5, 104sqlemafi 12430 . . . 4  |-  ( ph  ->  A  e.  Fin )
5047, 49eqeltrd 2266 . . 3  |-  ( ph  ->  dom  F  e.  Fin )
51 fundmfibi 6969 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
522, 51ax-mp 5 . . 3  |-  ( F  e.  Fin  <->  dom  F  e. 
Fin )
5350, 52sylibr 134 . 2  |-  ( ph  ->  F  e.  Fin )
54 funrnfi 6972 . 2  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
554, 46, 53, 54mp3an2i 1353 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468   E.wrex 2469    C_ wss 3144    |-> cmpt 4079   `'ccnv 4643   dom cdm 4644   ran crn 4645   Rel wrel 4649   Fun wfun 5229   -->wf 5231   -1-1->wf1 5232  (class class class)co 5897   Fincfn 6767   CCcc 7840   0cc0 7842   1c1 7843    - cmin 8159   NNcn 8950   2c2 9001   ZZcz 9284   ...cfz 10040    mod cmo 10355   ^cexp 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-er 6560  df-en 6768  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554
This theorem is referenced by:  4sqlem11  12436
  Copyright terms: Public domain W3C validator