ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi Unicode version

Theorem 4sqlemffi 12537
Description: Lemma for 4sq 12551.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlemffi  |-  ( ph  ->  ran  F  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    v, P    ph, v
Allowed substitution hints:    A( u, m)    F( v, u, m)    N( v)

Proof of Theorem 4sqlemffi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
21funmpt2 5294 . . 3  |-  Fun  F
3 funrel 5272 . . 3  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . 2  |-  Rel  F
5 4sqlemafi.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
65nnzd 9441 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7 peano2zm 9358 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
10 4sqlemafi.a . . . . . . . . 9  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
12 elfzelz 10094 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1312adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
14 zsqcl 10684 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1513, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
165adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
1715, 16zmodcld 10419 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
1817nn0zd 9440 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
2011, 19eqeltrd 2270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
2120rexlimdva2 2614 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
2221abssdv 3254 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
2310, 22eqsstrid 3226 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
2423sselda 3180 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
259, 24zsubcld 9447 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
2625ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. v  e.  A  ( ( P  - 
1 )  -  v
)  e.  ZZ )
278zcnd 9443 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  ( P  -  1 )  e.  CC )
2924adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
v  e.  ZZ )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  ZZ )
3130zcnd 9443 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  CC )
3223adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  A  C_  ZZ )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  A )
3432, 33sseldd 3181 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  ZZ )
3534zcnd 9443 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  CC )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  x  e.  CC )
37 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
3828, 31, 36, 37subcand 8373 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  =  x )
3938ex 115 . . . . . 6  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
4039ralrimivva 2576 . . . . 5  |-  ( ph  ->  A. v  e.  A  A. x  e.  A  ( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
41 oveq2 5927 . . . . . 6  |-  ( v  =  x  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
421, 41f1mpt 5815 . . . . 5  |-  ( F : A -1-1-> ZZ  <->  ( A. v  e.  A  (
( P  -  1 )  -  v )  e.  ZZ  /\  A. v  e.  A  A. x  e.  A  (
( ( P  - 
1 )  -  v
)  =  ( ( P  -  1 )  -  x )  -> 
v  =  x ) ) )
4326, 40, 42sylanbrc 417 . . . 4  |-  ( ph  ->  F : A -1-1-> ZZ )
44 df-f1 5260 . . . 4  |-  ( F : A -1-1-> ZZ  <->  ( F : A --> ZZ  /\  Fun  `' F ) )
4543, 44sylib 122 . . 3  |-  ( ph  ->  ( F : A --> ZZ  /\  Fun  `' F
) )
4645simprd 114 . 2  |-  ( ph  ->  Fun  `' F )
471, 25dmmptd 5385 . . . 4  |-  ( ph  ->  dom  F  =  A )
48 4sqlemafi.n . . . . 5  |-  ( ph  ->  N  e.  NN )
4948, 5, 104sqlemafi 12536 . . . 4  |-  ( ph  ->  A  e.  Fin )
5047, 49eqeltrd 2270 . . 3  |-  ( ph  ->  dom  F  e.  Fin )
51 fundmfibi 6999 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
522, 51ax-mp 5 . . 3  |-  ( F  e.  Fin  <->  dom  F  e. 
Fin )
5350, 52sylibr 134 . 2  |-  ( ph  ->  F  e.  Fin )
54 funrnfi 7003 . 2  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
554, 46, 53, 54mp3an2i 1353 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473    C_ wss 3154    |-> cmpt 4091   `'ccnv 4659   dom cdm 4660   ran crn 4661   Rel wrel 4665   Fun wfun 5249   -->wf 5251   -1-1->wf1 5252  (class class class)co 5919   Fincfn 6796   CCcc 7872   0cc0 7874   1c1 7875    - cmin 8192   NNcn 8984   2c2 9035   ZZcz 9320   ...cfz 10077    mod cmo 10396   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  4sqlem11  12542
  Copyright terms: Public domain W3C validator