ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi Unicode version

Theorem 4sqlemffi 12914
Description: Lemma for 4sq 12928.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlemffi  |-  ( ph  ->  ran  F  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    v, P    ph, v
Allowed substitution hints:    A( u, m)    F( v, u, m)    N( v)

Proof of Theorem 4sqlemffi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
21funmpt2 5356 . . 3  |-  Fun  F
3 funrel 5334 . . 3  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . 2  |-  Rel  F
5 4sqlemafi.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
65nnzd 9564 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7 peano2zm 9480 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
10 4sqlemafi.a . . . . . . . . 9  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
12 elfzelz 10217 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1312adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
14 zsqcl 10827 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1513, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
165adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
1715, 16zmodcld 10562 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
1817nn0zd 9563 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
2011, 19eqeltrd 2306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
2120rexlimdva2 2651 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
2221abssdv 3298 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
2310, 22eqsstrid 3270 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
2423sselda 3224 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
259, 24zsubcld 9570 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
2625ralrimiva 2603 . . . . 5  |-  ( ph  ->  A. v  e.  A  ( ( P  - 
1 )  -  v
)  e.  ZZ )
278zcnd 9566 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  ( P  -  1 )  e.  CC )
2924adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
v  e.  ZZ )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  ZZ )
3130zcnd 9566 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  CC )
3223adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  A  C_  ZZ )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  A )
3432, 33sseldd 3225 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  ZZ )
3534zcnd 9566 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  CC )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  x  e.  CC )
37 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
3828, 31, 36, 37subcand 8494 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  =  x )
3938ex 115 . . . . . 6  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
4039ralrimivva 2612 . . . . 5  |-  ( ph  ->  A. v  e.  A  A. x  e.  A  ( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
41 oveq2 6008 . . . . . 6  |-  ( v  =  x  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
421, 41f1mpt 5894 . . . . 5  |-  ( F : A -1-1-> ZZ  <->  ( A. v  e.  A  (
( P  -  1 )  -  v )  e.  ZZ  /\  A. v  e.  A  A. x  e.  A  (
( ( P  - 
1 )  -  v
)  =  ( ( P  -  1 )  -  x )  -> 
v  =  x ) ) )
4326, 40, 42sylanbrc 417 . . . 4  |-  ( ph  ->  F : A -1-1-> ZZ )
44 df-f1 5322 . . . 4  |-  ( F : A -1-1-> ZZ  <->  ( F : A --> ZZ  /\  Fun  `' F ) )
4543, 44sylib 122 . . 3  |-  ( ph  ->  ( F : A --> ZZ  /\  Fun  `' F
) )
4645simprd 114 . 2  |-  ( ph  ->  Fun  `' F )
471, 25dmmptd 5453 . . . 4  |-  ( ph  ->  dom  F  =  A )
48 4sqlemafi.n . . . . 5  |-  ( ph  ->  N  e.  NN )
4948, 5, 104sqlemafi 12913 . . . 4  |-  ( ph  ->  A  e.  Fin )
5047, 49eqeltrd 2306 . . 3  |-  ( ph  ->  dom  F  e.  Fin )
51 fundmfibi 7101 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
522, 51ax-mp 5 . . 3  |-  ( F  e.  Fin  <->  dom  F  e. 
Fin )
5350, 52sylibr 134 . 2  |-  ( ph  ->  F  e.  Fin )
54 funrnfi 7105 . 2  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
554, 46, 53, 54mp3an2i 1376 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509    C_ wss 3197    |-> cmpt 4144   `'ccnv 4717   dom cdm 4718   ran crn 4719   Rel wrel 4723   Fun wfun 5311   -->wf 5313   -1-1->wf1 5314  (class class class)co 6000   Fincfn 6885   CCcc 7993   0cc0 7995   1c1 7996    - cmin 8313   NNcn 9106   2c2 9157   ZZcz 9442   ...cfz 10200    mod cmo 10539   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  4sqlem11  12919
  Copyright terms: Public domain W3C validator