ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemffi Unicode version

Theorem 4sqlemffi 12534
Description: Lemma for 4sq 12548.  ran  F is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlemffi.f  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlemffi  |-  ( ph  ->  ran  F  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u    v, A    v, P    ph, v
Allowed substitution hints:    A( u, m)    F( v, u, m)    N( v)

Proof of Theorem 4sqlemffi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemffi.f . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
21funmpt2 5293 . . 3  |-  Fun  F
3 funrel 5271 . . 3  |-  ( Fun 
F  ->  Rel  F )
42, 3ax-mp 5 . 2  |-  Rel  F
5 4sqlemafi.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
65nnzd 9438 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7 peano2zm 9355 . . . . . . . . 9  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( P  -  1 )  e.  ZZ )
10 4sqlemafi.a . . . . . . . . 9  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
12 elfzelz 10091 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1312adantl 277 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
14 zsqcl 10681 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1513, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
165adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
1715, 16zmodcld 10416 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
1817nn0zd 9437 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ZZ )
2011, 19eqeltrd 2270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  /\  u  =  ( ( m ^ 2 )  mod 
P ) )  ->  u  e.  ZZ )
2120rexlimdva2 2614 . . . . . . . . . 10  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P )  ->  u  e.  ZZ ) )
2221abssdv 3253 . . . . . . . . 9  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ZZ )
2310, 22eqsstrid 3225 . . . . . . . 8  |-  ( ph  ->  A  C_  ZZ )
2423sselda 3179 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ZZ )
259, 24zsubcld 9444 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( P  -  1 )  -  v )  e.  ZZ )
2625ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. v  e.  A  ( ( P  - 
1 )  -  v
)  e.  ZZ )
278zcnd 9440 . . . . . . . . 9  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2827ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  ( P  -  1 )  e.  CC )
2924adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
v  e.  ZZ )
3029adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  ZZ )
3130zcnd 9440 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  e.  CC )
3223adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  A  C_  ZZ )
33 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  A )
3432, 33sseldd 3180 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  ZZ )
3534zcnd 9440 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  ->  x  e.  CC )
3635adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  x  e.  CC )
37 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
3828, 31, 36, 37subcand 8371 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  A  /\  x  e.  A )
)  /\  ( ( P  -  1 )  -  v )  =  ( ( P  - 
1 )  -  x
) )  ->  v  =  x )
3938ex 115 . . . . . 6  |-  ( (
ph  /\  ( v  e.  A  /\  x  e.  A ) )  -> 
( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
4039ralrimivva 2576 . . . . 5  |-  ( ph  ->  A. v  e.  A  A. x  e.  A  ( ( ( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x )  ->  v  =  x ) )
41 oveq2 5926 . . . . . 6  |-  ( v  =  x  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  x ) )
421, 41f1mpt 5814 . . . . 5  |-  ( F : A -1-1-> ZZ  <->  ( A. v  e.  A  (
( P  -  1 )  -  v )  e.  ZZ  /\  A. v  e.  A  A. x  e.  A  (
( ( P  - 
1 )  -  v
)  =  ( ( P  -  1 )  -  x )  -> 
v  =  x ) ) )
4326, 40, 42sylanbrc 417 . . . 4  |-  ( ph  ->  F : A -1-1-> ZZ )
44 df-f1 5259 . . . 4  |-  ( F : A -1-1-> ZZ  <->  ( F : A --> ZZ  /\  Fun  `' F ) )
4543, 44sylib 122 . . 3  |-  ( ph  ->  ( F : A --> ZZ  /\  Fun  `' F
) )
4645simprd 114 . 2  |-  ( ph  ->  Fun  `' F )
471, 25dmmptd 5384 . . . 4  |-  ( ph  ->  dom  F  =  A )
48 4sqlemafi.n . . . . 5  |-  ( ph  ->  N  e.  NN )
4948, 5, 104sqlemafi 12533 . . . 4  |-  ( ph  ->  A  e.  Fin )
5047, 49eqeltrd 2270 . . 3  |-  ( ph  ->  dom  F  e.  Fin )
51 fundmfibi 6997 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
522, 51ax-mp 5 . . 3  |-  ( F  e.  Fin  <->  dom  F  e. 
Fin )
5350, 52sylibr 134 . 2  |-  ( ph  ->  F  e.  Fin )
54 funrnfi 7001 . 2  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
554, 46, 53, 54mp3an2i 1353 1  |-  ( ph  ->  ran  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473    C_ wss 3153    |-> cmpt 4090   `'ccnv 4658   dom cdm 4659   ran crn 4660   Rel wrel 4664   Fun wfun 5248   -->wf 5250   -1-1->wf1 5251  (class class class)co 5918   Fincfn 6794   CCcc 7870   0cc0 7872   1c1 7873    - cmin 8190   NNcn 8982   2c2 9033   ZZcz 9317   ...cfz 10074    mod cmo 10393   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  4sqlem11  12539
  Copyright terms: Public domain W3C validator