ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngrcl Unicode version

Theorem subrngrcl 14177
Description: Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngrcl  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )

Proof of Theorem subrngrcl
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  R )  =  (
Base `  R )
21issubrng 14173 . 2  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) ) )
32simp1bi 1036 1  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   ` cfv 5318  (class class class)co 6007   Basecbs 13042   ↾s cress 13043  Rngcrng 13905  SubRngcsubrng 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-ndx 13045  df-slot 13046  df-base 13048  df-subrng 14172
This theorem is referenced by:  subrngsubg  14178  subrngringnsg  14179  subrngmcl  14183  opprsubrngg  14185  subrngintm  14186  subsubrng  14188
  Copyright terms: Public domain W3C validator