![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrngrcl | GIF version |
Description: Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
subrngrcl | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | issubrng 13659 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))) |
3 | 2 | simp1bi 1014 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ⊆ wss 3149 ‘cfv 5242 (class class class)co 5906 Basecbs 12592 ↾s cress 12593 Rngcrng 13392 SubRngcsubrng 13657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-cnex 7949 ax-resscn 7950 ax-1re 7952 ax-addrcl 7955 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-mpt 4088 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-fv 5250 df-ov 5909 df-inn 8969 df-ndx 12595 df-slot 12596 df-base 12598 df-subrng 13658 |
This theorem is referenced by: subrngsubg 13664 subrngringnsg 13665 subrngmcl 13669 opprsubrngg 13671 subrngintm 13672 subsubrng 13674 |
Copyright terms: Public domain | W3C validator |