ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngringnsg Unicode version

Theorem subrngringnsg 13549
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )

Proof of Theorem subrngringnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13548 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 subrngrcl 13547 . . . . . . . . 9  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 rngabl 13286 . . . . . . . . 9  |-  ( R  e. Rng  ->  R  e.  Abel )
42, 3syl 14 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  R  e.  Abel )
543anim1i 1187 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )
653expb 1206 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )
7 eqid 2189 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2189 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
97, 8ablcom 13239 . . . . . 6  |-  ( ( R  e.  Abel  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  =  ( y ( +g  `  R
) x ) )
106, 9syl 14 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( y ( +g  `  R ) x ) )
1110eleq1d 2258 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  <->  ( y ( +g  `  R
) x )  e.  A ) )
1211biimpd 144 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  ->  ( y ( +g  `  R ) x )  e.  A ) )
1312ralrimivva 2572 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( +g  `  R
) y )  e.  A  ->  ( y
( +g  `  R ) x )  e.  A
) )
147, 8isnsg2 13139 . 2  |-  ( A  e.  (NrmSGrp `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( +g  `  R ) y )  e.  A  ->  (
y ( +g  `  R
) x )  e.  A ) ) )
151, 13, 14sylanbrc 417 1  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5235  (class class class)co 5895   Basecbs 12511   +g cplusg 12586  SubGrpcsubg 13103  NrmSGrpcnsg 13104   Abelcabl 13221  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-mulr 12600  df-subg 13106  df-nsg 13107  df-cmn 13222  df-abl 13223  df-rng 13284  df-subrng 13542
This theorem is referenced by:  rng2idlnsg  13830  rng2idlsubgnsg  13833
  Copyright terms: Public domain W3C validator