ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngringnsg Unicode version

Theorem subrngringnsg 14042
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )

Proof of Theorem subrngringnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 14041 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 subrngrcl 14040 . . . . . . . . 9  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 rngabl 13772 . . . . . . . . 9  |-  ( R  e. Rng  ->  R  e.  Abel )
42, 3syl 14 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  R  e.  Abel )
543anim1i 1188 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )
653expb 1207 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )
7 eqid 2206 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2206 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
97, 8ablcom 13714 . . . . . 6  |-  ( ( R  e.  Abel  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  =  ( y ( +g  `  R
) x ) )
106, 9syl 14 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( y ( +g  `  R ) x ) )
1110eleq1d 2275 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  <->  ( y ( +g  `  R
) x )  e.  A ) )
1211biimpd 144 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  ->  ( y ( +g  `  R ) x )  e.  A ) )
1312ralrimivva 2589 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( +g  `  R
) y )  e.  A  ->  ( y
( +g  `  R ) x )  e.  A
) )
147, 8isnsg2 13614 . 2  |-  ( A  e.  (NrmSGrp `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( +g  `  R ) y )  e.  A  ->  (
y ( +g  `  R
) x )  e.  A ) ) )
151, 13, 14sylanbrc 417 1  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984  SubGrpcsubg 13578  NrmSGrpcnsg 13579   Abelcabl 13696  Rngcrng 13769  SubRngcsubrng 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-subg 13581  df-nsg 13582  df-cmn 13697  df-abl 13698  df-rng 13770  df-subrng 14035
This theorem is referenced by:  rng2idlnsg  14355  rng2idlsubgnsg  14358
  Copyright terms: Public domain W3C validator