ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngringnsg Unicode version

Theorem subrngringnsg 13837
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )

Proof of Theorem subrngringnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13836 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 subrngrcl 13835 . . . . . . . . 9  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 rngabl 13567 . . . . . . . . 9  |-  ( R  e. Rng  ->  R  e.  Abel )
42, 3syl 14 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  R  e.  Abel )
543anim1i 1187 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )
653expb 1206 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )
7 eqid 2196 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2196 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
97, 8ablcom 13509 . . . . . 6  |-  ( ( R  e.  Abel  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  =  ( y ( +g  `  R
) x ) )
106, 9syl 14 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( y ( +g  `  R ) x ) )
1110eleq1d 2265 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  <->  ( y ( +g  `  R
) x )  e.  A ) )
1211biimpd 144 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  ->  ( y ( +g  `  R ) x )  e.  A ) )
1312ralrimivva 2579 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( +g  `  R
) y )  e.  A  ->  ( y
( +g  `  R ) x )  e.  A
) )
147, 8isnsg2 13409 . 2  |-  ( A  e.  (NrmSGrp `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( +g  `  R ) y )  e.  A  ->  (
y ( +g  `  R
) x )  e.  A ) ) )
151, 13, 14sylanbrc 417 1  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780  SubGrpcsubg 13373  NrmSGrpcnsg 13374   Abelcabl 13491  Rngcrng 13564  SubRngcsubrng 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-subg 13376  df-nsg 13377  df-cmn 13492  df-abl 13493  df-rng 13565  df-subrng 13830
This theorem is referenced by:  rng2idlnsg  14150  rng2idlsubgnsg  14153
  Copyright terms: Public domain W3C validator