ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngringnsg Unicode version

Theorem subrngringnsg 13885
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )

Proof of Theorem subrngringnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13884 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (SubGrp `  R ) )
2 subrngrcl 13883 . . . . . . . . 9  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 rngabl 13615 . . . . . . . . 9  |-  ( R  e. Rng  ->  R  e.  Abel )
42, 3syl 14 . . . . . . . 8  |-  ( A  e.  (SubRng `  R
)  ->  R  e.  Abel )
543anim1i 1187 . . . . . . 7  |-  ( ( A  e.  (SubRng `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )
653expb 1206 . . . . . 6  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( R  e.  Abel  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )
7 eqid 2204 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2204 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
97, 8ablcom 13557 . . . . . 6  |-  ( ( R  e.  Abel  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  =  ( y ( +g  `  R
) x ) )
106, 9syl 14 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( y ( +g  `  R ) x ) )
1110eleq1d 2273 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  <->  ( y ( +g  `  R
) x )  e.  A ) )
1211biimpd 144 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y )  e.  A  ->  ( y ( +g  `  R ) x )  e.  A ) )
1312ralrimivva 2587 . 2  |-  ( A  e.  (SubRng `  R
)  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( ( x ( +g  `  R
) y )  e.  A  ->  ( y
( +g  `  R ) x )  e.  A
) )
147, 8isnsg2 13457 . 2  |-  ( A  e.  (NrmSGrp `  R
)  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( ( x ( +g  `  R ) y )  e.  A  ->  (
y ( +g  `  R
) x )  e.  A ) ) )
151, 13, 14sylanbrc 417 1  |-  ( A  e.  (SubRng `  R
)  ->  A  e.  (NrmSGrp `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828  SubGrpcsubg 13421  NrmSGrpcnsg 13422   Abelcabl 13539  Rngcrng 13612  SubRngcsubrng 13877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mulr 12842  df-subg 13424  df-nsg 13425  df-cmn 13540  df-abl 13541  df-rng 13613  df-subrng 13878
This theorem is referenced by:  rng2idlnsg  14198  rng2idlsubgnsg  14201
  Copyright terms: Public domain W3C validator