ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg Unicode version

Theorem opprsubrngg 13707
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubrngg  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )

Proof of Theorem opprsubrngg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 13699 . . . 4  |-  ( x  e.  (SubRng `  R
)  ->  R  e. Rng )
21a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  ->  R  e. Rng ) )
3 subrngrcl 13699 . . . 4  |-  ( x  e.  (SubRng `  O
)  ->  O  e. Rng )
4 opprsubrng.o . . . . 5  |-  O  =  (oppr
`  R )
54opprrngbg 13574 . . . 4  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
63, 5imbitrrid 156 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  O )  ->  R  e. Rng ) )
74opprsubgg 13580 . . . . . . 7  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  O )
)
87eleq2d 2263 . . . . . 6  |-  ( R  e. Rng  ->  ( x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O
) ) )
9 ralcom 2657 . . . . . . 7  |-  ( A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z
( .r `  R
) y )  e.  x )
10 vex 2763 . . . . . . . . . 10  |-  y  e. 
_V
11 vex 2763 . . . . . . . . . 10  |-  z  e. 
_V
12 eqid 2193 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
14 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
1512, 13, 4, 14opprmulg 13567 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  y  e.  _V  /\  z  e. 
_V )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1610, 11, 15mp3an23 1340 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1716eleq1d 2262 . . . . . . . 8  |-  ( R  e. Rng  ->  ( ( y ( .r `  O
) z )  e.  x  <->  ( z ( .r `  R ) y )  e.  x
) )
18172ralbidv 2518 . . . . . . 7  |-  ( R  e. Rng  ->  ( A. y  e.  x  A. z  e.  x  ( y
( .r `  O
) z )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z ( .r
`  R ) y )  e.  x ) )
199, 18bitr4id 199 . . . . . 6  |-  ( R  e. Rng  ->  ( A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) )
208, 19anbi12d 473 . . . . 5  |-  ( R  e. Rng  ->  ( ( x  e.  (SubGrp `  R
)  /\  A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) ) )
2112, 13issubrng2 13706 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  ( x  e.  (SubGrp `  R )  /\  A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x ) ) )
224opprrng 13573 . . . . . 6  |-  ( R  e. Rng  ->  O  e. Rng )
23 eqid 2193 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
2423, 14issubrng2 13706 . . . . . 6  |-  ( O  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2522, 24syl 14 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2620, 21, 253bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O
) ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  ->  ( x  e.  (SubRng `  R
)  <->  x  e.  (SubRng `  O ) ) ) )
282, 6, 27pm5.21ndd 706 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O ) ) )
2928eqrdv 2191 1  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696  SubGrpcsubg 13237  Rngcrng 13428  opprcoppr 13563  SubRngcsubrng 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-oppr 13564  df-subrng 13694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator