ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg Unicode version

Theorem opprsubrngg 14088
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubrngg  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )

Proof of Theorem opprsubrngg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 14080 . . . 4  |-  ( x  e.  (SubRng `  R
)  ->  R  e. Rng )
21a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  ->  R  e. Rng ) )
3 subrngrcl 14080 . . . 4  |-  ( x  e.  (SubRng `  O
)  ->  O  e. Rng )
4 opprsubrng.o . . . . 5  |-  O  =  (oppr
`  R )
54opprrngbg 13955 . . . 4  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
63, 5imbitrrid 156 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  O )  ->  R  e. Rng ) )
74opprsubgg 13961 . . . . . . 7  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  O )
)
87eleq2d 2277 . . . . . 6  |-  ( R  e. Rng  ->  ( x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O
) ) )
9 ralcom 2671 . . . . . . 7  |-  ( A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z
( .r `  R
) y )  e.  x )
10 vex 2779 . . . . . . . . . 10  |-  y  e. 
_V
11 vex 2779 . . . . . . . . . 10  |-  z  e. 
_V
12 eqid 2207 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2207 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
14 eqid 2207 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
1512, 13, 4, 14opprmulg 13948 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  y  e.  _V  /\  z  e. 
_V )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1610, 11, 15mp3an23 1342 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1716eleq1d 2276 . . . . . . . 8  |-  ( R  e. Rng  ->  ( ( y ( .r `  O
) z )  e.  x  <->  ( z ( .r `  R ) y )  e.  x
) )
18172ralbidv 2532 . . . . . . 7  |-  ( R  e. Rng  ->  ( A. y  e.  x  A. z  e.  x  ( y
( .r `  O
) z )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z ( .r
`  R ) y )  e.  x ) )
199, 18bitr4id 199 . . . . . 6  |-  ( R  e. Rng  ->  ( A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) )
208, 19anbi12d 473 . . . . 5  |-  ( R  e. Rng  ->  ( ( x  e.  (SubGrp `  R
)  /\  A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) ) )
2112, 13issubrng2 14087 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  ( x  e.  (SubGrp `  R )  /\  A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x ) ) )
224opprrng 13954 . . . . . 6  |-  ( R  e. Rng  ->  O  e. Rng )
23 eqid 2207 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
2423, 14issubrng2 14087 . . . . . 6  |-  ( O  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2522, 24syl 14 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2620, 21, 253bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O
) ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  ->  ( x  e.  (SubRng `  R
)  <->  x  e.  (SubRng `  O ) ) ) )
282, 6, 27pm5.21ndd 707 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O ) ) )
2928eqrdv 2205 1  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025  SubGrpcsubg 13618  Rngcrng 13809  opprcoppr 13944  SubRngcsubrng 14074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810  df-oppr 13945  df-subrng 14075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator