ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg Unicode version

Theorem opprsubrngg 13710
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubrngg  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )

Proof of Theorem opprsubrngg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 13702 . . . 4  |-  ( x  e.  (SubRng `  R
)  ->  R  e. Rng )
21a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  ->  R  e. Rng ) )
3 subrngrcl 13702 . . . 4  |-  ( x  e.  (SubRng `  O
)  ->  O  e. Rng )
4 opprsubrng.o . . . . 5  |-  O  =  (oppr
`  R )
54opprrngbg 13577 . . . 4  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
63, 5imbitrrid 156 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  O )  ->  R  e. Rng ) )
74opprsubgg 13583 . . . . . . 7  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  O )
)
87eleq2d 2263 . . . . . 6  |-  ( R  e. Rng  ->  ( x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O
) ) )
9 ralcom 2657 . . . . . . 7  |-  ( A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z
( .r `  R
) y )  e.  x )
10 vex 2763 . . . . . . . . . 10  |-  y  e. 
_V
11 vex 2763 . . . . . . . . . 10  |-  z  e. 
_V
12 eqid 2193 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
14 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
1512, 13, 4, 14opprmulg 13570 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  y  e.  _V  /\  z  e. 
_V )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1610, 11, 15mp3an23 1340 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1716eleq1d 2262 . . . . . . . 8  |-  ( R  e. Rng  ->  ( ( y ( .r `  O
) z )  e.  x  <->  ( z ( .r `  R ) y )  e.  x
) )
18172ralbidv 2518 . . . . . . 7  |-  ( R  e. Rng  ->  ( A. y  e.  x  A. z  e.  x  ( y
( .r `  O
) z )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z ( .r
`  R ) y )  e.  x ) )
199, 18bitr4id 199 . . . . . 6  |-  ( R  e. Rng  ->  ( A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) )
208, 19anbi12d 473 . . . . 5  |-  ( R  e. Rng  ->  ( ( x  e.  (SubGrp `  R
)  /\  A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) ) )
2112, 13issubrng2 13709 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  ( x  e.  (SubGrp `  R )  /\  A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x ) ) )
224opprrng 13576 . . . . . 6  |-  ( R  e. Rng  ->  O  e. Rng )
23 eqid 2193 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
2423, 14issubrng2 13709 . . . . . 6  |-  ( O  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2522, 24syl 14 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2620, 21, 253bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O
) ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  ->  ( x  e.  (SubRng `  R
)  <->  x  e.  (SubRng `  O ) ) ) )
282, 6, 27pm5.21ndd 706 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O ) ) )
2928eqrdv 2191 1  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   ` cfv 5255  (class class class)co 5919   Basecbs 12621   .rcmulr 12699  SubGrpcsubg 13240  Rngcrng 13431  opprcoppr 13566  SubRngcsubrng 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-oppr 13567  df-subrng 13697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator