ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg Unicode version

Theorem opprsubrngg 13767
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubrngg  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )

Proof of Theorem opprsubrngg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 13759 . . . 4  |-  ( x  e.  (SubRng `  R
)  ->  R  e. Rng )
21a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  ->  R  e. Rng ) )
3 subrngrcl 13759 . . . 4  |-  ( x  e.  (SubRng `  O
)  ->  O  e. Rng )
4 opprsubrng.o . . . . 5  |-  O  =  (oppr
`  R )
54opprrngbg 13634 . . . 4  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
63, 5imbitrrid 156 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  O )  ->  R  e. Rng ) )
74opprsubgg 13640 . . . . . . 7  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  O )
)
87eleq2d 2266 . . . . . 6  |-  ( R  e. Rng  ->  ( x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O
) ) )
9 ralcom 2660 . . . . . . 7  |-  ( A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z
( .r `  R
) y )  e.  x )
10 vex 2766 . . . . . . . . . 10  |-  y  e. 
_V
11 vex 2766 . . . . . . . . . 10  |-  z  e. 
_V
12 eqid 2196 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
14 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  O )  =  ( .r `  O
)
1512, 13, 4, 14opprmulg 13627 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  y  e.  _V  /\  z  e. 
_V )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1610, 11, 15mp3an23 1340 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
1716eleq1d 2265 . . . . . . . 8  |-  ( R  e. Rng  ->  ( ( y ( .r `  O
) z )  e.  x  <->  ( z ( .r `  R ) y )  e.  x
) )
18172ralbidv 2521 . . . . . . 7  |-  ( R  e. Rng  ->  ( A. y  e.  x  A. z  e.  x  ( y
( .r `  O
) z )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( z ( .r
`  R ) y )  e.  x ) )
199, 18bitr4id 199 . . . . . 6  |-  ( R  e. Rng  ->  ( A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x  <->  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) )
208, 19anbi12d 473 . . . . 5  |-  ( R  e. Rng  ->  ( ( x  e.  (SubGrp `  R
)  /\  A. z  e.  x  A. y  e.  x  ( z
( .r `  R
) y )  e.  x )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  ( y ( .r
`  O ) z )  e.  x ) ) )
2112, 13issubrng2 13766 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  ( x  e.  (SubGrp `  R )  /\  A. z  e.  x  A. y  e.  x  (
z ( .r `  R ) y )  e.  x ) ) )
224opprrng 13633 . . . . . 6  |-  ( R  e. Rng  ->  O  e. Rng )
23 eqid 2196 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
2423, 14issubrng2 13766 . . . . . 6  |-  ( O  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2522, 24syl 14 . . . . 5  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  O )  <->  ( x  e.  (SubGrp `  O )  /\  A. y  e.  x  A. z  e.  x  (
y ( .r `  O ) z )  e.  x ) ) )
2620, 21, 253bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O
) ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  ->  ( x  e.  (SubRng `  R
)  <->  x  e.  (SubRng `  O ) ) ) )
282, 6, 27pm5.21ndd 706 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubRng `  R )  <->  x  e.  (SubRng `  O ) ) )
2928eqrdv 2194 1  |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SubGrpcsubg 13297  Rngcrng 13488  opprcoppr 13623  SubRngcsubrng 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-oppr 13624  df-subrng 13754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator