ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngmcl Unicode version

Theorem subrngmcl 14056
Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 14080. (Revised by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngmcl.p  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
subrngmcl  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )

Proof of Theorem subrngmcl
StepHypRef Expression
1 eqid 2206 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
21subrngrng 14049 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  ( Rs  A
)  e. Rng )
323ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( Rs  A )  e. Rng )
4 simp2 1001 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  X  e.  A )
51subrngbas 14053 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
653ad2ant1 1021 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  A  =  ( Base `  ( Rs  A ) ) )
74, 6eleqtrd 2285 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  X  e.  ( Base `  ( Rs  A ) ) )
8 simp3 1002 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  Y  e.  A )
98, 6eleqtrd 2285 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  Y  e.  ( Base `  ( Rs  A ) ) )
10 eqid 2206 . . . 4  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
11 eqid 2206 . . . 4  |-  ( .r
`  ( Rs  A ) )  =  ( .r
`  ( Rs  A ) )
1210, 11rngcl 13791 . . 3  |-  ( ( ( Rs  A )  e. Rng  /\  X  e.  ( Base `  ( Rs  A ) )  /\  Y  e.  ( Base `  ( Rs  A ) ) )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
133, 7, 9, 12syl3anc 1250 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
14 subrngrcl 14050 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
15 subrngmcl.p . . . . . 6  |-  .x.  =  ( .r `  R )
161, 15ressmulrg 13062 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  R  e. Rng )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1714, 16mpdan 421 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
18173ad2ant1 1021 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1918oveqd 5979 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  =  ( X ( .r
`  ( Rs  A ) ) Y ) )
2013, 19, 63eltr4d 2290 1  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5285  (class class class)co 5962   Basecbs 12917   ↾s cress 12918   .rcmulr 12995  Rngcrng 13779  SubRngcsubrng 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-mgm 13273  df-sgrp 13319  df-subg 13591  df-abl 13708  df-mgp 13768  df-rng 13780  df-subrng 14045
This theorem is referenced by:  issubrng2  14057  subrngintm  14059
  Copyright terms: Public domain W3C validator