ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngmcl Unicode version

Theorem subrngmcl 13553
Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13577. (Revised by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngmcl.p  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
subrngmcl  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )

Proof of Theorem subrngmcl
StepHypRef Expression
1 eqid 2189 . . . . 5  |-  ( Rs  A )  =  ( Rs  A )
21subrngrng 13546 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  ( Rs  A
)  e. Rng )
323ad2ant1 1020 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( Rs  A )  e. Rng )
4 simp2 1000 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  X  e.  A )
51subrngbas 13550 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  A  =  ( Base `  ( Rs  A
) ) )
653ad2ant1 1020 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  A  =  ( Base `  ( Rs  A ) ) )
74, 6eleqtrd 2268 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  X  e.  ( Base `  ( Rs  A ) ) )
8 simp3 1001 . . . 4  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  Y  e.  A )
98, 6eleqtrd 2268 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  Y  e.  ( Base `  ( Rs  A ) ) )
10 eqid 2189 . . . 4  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
11 eqid 2189 . . . 4  |-  ( .r
`  ( Rs  A ) )  =  ( .r
`  ( Rs  A ) )
1210, 11rngcl 13295 . . 3  |-  ( ( ( Rs  A )  e. Rng  /\  X  e.  ( Base `  ( Rs  A ) )  /\  Y  e.  ( Base `  ( Rs  A ) ) )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
133, 7, 9, 12syl3anc 1249 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X ( .r `  ( Rs  A ) ) Y )  e.  ( Base `  ( Rs  A ) ) )
14 subrngrcl 13547 . . . . 5  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
15 subrngmcl.p . . . . . 6  |-  .x.  =  ( .r `  R )
161, 15ressmulrg 12653 . . . . 5  |-  ( ( A  e.  (SubRng `  R )  /\  R  e. Rng )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1714, 16mpdan 421 . . . 4  |-  ( A  e.  (SubRng `  R
)  ->  .x.  =  ( .r `  ( Rs  A ) ) )
18173ad2ant1 1020 . . 3  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  .x.  =  ( .r `  ( Rs  A ) ) )
1918oveqd 5912 . 2  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  =  ( X ( .r
`  ( Rs  A ) ) Y ) )
2013, 19, 63eltr4d 2273 1  |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512   .rcmulr 12587  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-mgm 12829  df-sgrp 12862  df-subg 13106  df-abl 13223  df-mgp 13272  df-rng 13284  df-subrng 13542
This theorem is referenced by:  issubrng2  13554  subrngintm  13556
  Copyright terms: Public domain W3C validator