| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1i | Unicode version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 |
|
| Ref | Expression |
|---|---|
| sumeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 |
. 2
| |
| 2 | sumeq1 11781 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-sumdc 11780 |
| This theorem is referenced by: sumeq12i 11791 fsump1i 11859 fsum2d 11861 fsumxp 11862 isumnn0nn 11919 arisum 11924 arisum2 11925 geo2sum 11940 efsep 12117 ef4p 12120 dveflem 15313 dvply1 15352 1sgmprm 15581 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |