ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1i Unicode version

Theorem sumeq1i 11789
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
Hypothesis
Ref Expression
sumeq1i.1  |-  A  =  B
Assertion
Ref Expression
sumeq1i  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem sumeq1i
StepHypRef Expression
1 sumeq1i.1 . 2  |-  A  =  B
2 sumeq1 11781 . 2  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
31, 2ax-mp 5 1  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1373   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-seqfrec 10630  df-sumdc 11780
This theorem is referenced by:  sumeq12i  11791  fsump1i  11859  fsum2d  11861  fsumxp  11862  isumnn0nn  11919  arisum  11924  arisum2  11925  geo2sum  11940  efsep  12117  ef4p  12120  dveflem  15313  dvply1  15352  1sgmprm  15581  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator