ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1i Unicode version

Theorem sumeq1i 11132
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
Hypothesis
Ref Expression
sumeq1i.1  |-  A  =  B
Assertion
Ref Expression
sumeq1i  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem sumeq1i
StepHypRef Expression
1 sumeq1i.1 . 2  |-  A  =  B
2 sumeq1 11124 . 2  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
31, 2ax-mp 5 1  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1331   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-seqfrec 10219  df-sumdc 11123
This theorem is referenced by:  sumeq12i  11134  fsump1i  11202  fsum2d  11204  fsumxp  11205  isumnn0nn  11262  arisum  11267  arisum2  11268  geo2sum  11283  efsep  11397  ef4p  11400  dveflem  12855
  Copyright terms: Public domain W3C validator