ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1i GIF version

Theorem sumeq1i 11749
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
Hypothesis
Ref Expression
sumeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
sumeq1i Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumeq1i
StepHypRef Expression
1 sumeq1i.1 . 2 𝐴 = 𝐵
2 sumeq1 11741 . 2 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
31, 2ax-mp 5 1 Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Σcsu 11739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-seqfrec 10615  df-sumdc 11740
This theorem is referenced by:  sumeq12i  11751  fsump1i  11819  fsum2d  11821  fsumxp  11822  isumnn0nn  11879  arisum  11884  arisum2  11885  geo2sum  11900  efsep  12077  ef4p  12080  dveflem  15273  dvply1  15312  1sgmprm  15541  lgsquadlem2  15630
  Copyright terms: Public domain W3C validator