| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1i | GIF version | ||
| Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.) |
| Ref | Expression |
|---|---|
| sumeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sumeq1i | ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sumeq1 11861 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Σcsu 11859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 df-sumdc 11860 |
| This theorem is referenced by: sumeq12i 11871 fsump1i 11939 fsum2d 11941 fsumxp 11942 isumnn0nn 11999 arisum 12004 arisum2 12005 geo2sum 12020 efsep 12197 ef4p 12200 dveflem 15394 dvply1 15433 1sgmprm 15662 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |