ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1i GIF version

Theorem sumeq1i 11593
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
Hypothesis
Ref Expression
sumeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
sumeq1i Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumeq1i
StepHypRef Expression
1 sumeq1i.1 . 2 𝐴 = 𝐵
2 sumeq1 11585 . 2 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
31, 2ax-mp 5 1 Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1372  Σcsu 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-cnv 4681  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-recs 6381  df-frec 6467  df-seqfrec 10574  df-sumdc 11584
This theorem is referenced by:  sumeq12i  11595  fsump1i  11663  fsum2d  11665  fsumxp  11666  isumnn0nn  11723  arisum  11728  arisum2  11729  geo2sum  11744  efsep  11921  ef4p  11924  dveflem  15116  dvply1  15155  1sgmprm  15384  lgsquadlem2  15473
  Copyright terms: Public domain W3C validator