| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efsep | Unicode version | ||
| Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| efsep.1 |
|
| efsep.2 |
|
| efsep.3 |
|
| efsep.4 |
|
| efsep.5 |
|
| efsep.6 |
|
| efsep.7 |
|
| Ref | Expression |
|---|---|
| efsep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efsep.6 |
. 2
| |
| 2 | eqid 2205 |
. . . . . 6
| |
| 3 | efsep.3 |
. . . . . . . 8
| |
| 4 | 3 | nn0zi 9396 |
. . . . . . 7
|
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | eqidd 2206 |
. . . . . 6
| |
| 7 | eluznn0 9722 |
. . . . . . . 8
| |
| 8 | 3, 7 | mpan 424 |
. . . . . . 7
|
| 9 | efsep.4 |
. . . . . . . . 9
| |
| 10 | efsep.1 |
. . . . . . . . . 10
| |
| 11 | 10 | eftvalcn 12001 |
. . . . . . . . 9
|
| 12 | 9, 11 | sylan 283 |
. . . . . . . 8
|
| 13 | eftcl 11998 |
. . . . . . . . 9
| |
| 14 | 9, 13 | sylan 283 |
. . . . . . . 8
|
| 15 | 12, 14 | eqeltrd 2282 |
. . . . . . 7
|
| 16 | 8, 15 | sylan2 286 |
. . . . . 6
|
| 17 | 10 | eftlcvg 12031 |
. . . . . . 7
|
| 18 | 9, 3, 17 | sylancl 413 |
. . . . . 6
|
| 19 | 2, 5, 6, 16, 18 | isum1p 11836 |
. . . . 5
|
| 20 | 10 | eftvalcn 12001 |
. . . . . . 7
|
| 21 | 9, 3, 20 | sylancl 413 |
. . . . . 6
|
| 22 | efsep.2 |
. . . . . . . . . 10
| |
| 23 | 22 | eqcomi 2209 |
. . . . . . . . 9
|
| 24 | 23 | fveq2i 5581 |
. . . . . . . 8
|
| 25 | 24 | sumeq1i 11707 |
. . . . . . 7
|
| 26 | 25 | a1i 9 |
. . . . . 6
|
| 27 | 21, 26 | oveq12d 5964 |
. . . . 5
|
| 28 | 19, 27 | eqtrd 2238 |
. . . 4
|
| 29 | 28 | oveq2d 5962 |
. . 3
|
| 30 | efsep.5 |
. . . 4
| |
| 31 | eftcl 11998 |
. . . . 5
| |
| 32 | 9, 3, 31 | sylancl 413 |
. . . 4
|
| 33 | peano2nn0 9337 |
. . . . . . 7
| |
| 34 | 3, 33 | ax-mp 5 |
. . . . . 6
|
| 35 | 22, 34 | eqeltri 2278 |
. . . . 5
|
| 36 | 10 | eftlcl 12032 |
. . . . 5
|
| 37 | 9, 35, 36 | sylancl 413 |
. . . 4
|
| 38 | 30, 32, 37 | addassd 8097 |
. . 3
|
| 39 | 29, 38 | eqtr4d 2241 |
. 2
|
| 40 | efsep.7 |
. . 3
| |
| 41 | 40 | oveq1d 5961 |
. 2
|
| 42 | 1, 39, 41 | 3eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-ico 10018 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-fac 10873 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 |
| This theorem is referenced by: ef4p 12038 dveflem 15231 |
| Copyright terms: Public domain | W3C validator |