ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efsep Unicode version

Theorem efsep 11042
Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efsep.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efsep.2  |-  N  =  ( M  +  1 )
efsep.3  |-  M  e. 
NN0
efsep.4  |-  ( ph  ->  A  e.  CC )
efsep.5  |-  ( ph  ->  B  e.  CC )
efsep.6  |-  ( ph  ->  ( exp `  A
)  =  ( B  +  sum_ k  e.  (
ZZ>= `  M ) ( F `  k ) ) )
efsep.7  |-  ( ph  ->  ( B  +  ( ( A ^ M
)  /  ( ! `
 M ) ) )  =  D )
Assertion
Ref Expression
efsep  |-  ( ph  ->  ( exp `  A
)  =  ( D  +  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
Distinct variable groups:    k, n, A   
k, F    k, M, n    k, N, n    ph, k
Allowed substitution hints:    ph( n)    B( k, n)    D( k, n)    F( n)

Proof of Theorem efsep
StepHypRef Expression
1 efsep.6 . 2  |-  ( ph  ->  ( exp `  A
)  =  ( B  +  sum_ k  e.  (
ZZ>= `  M ) ( F `  k ) ) )
2 eqid 2089 . . . . . 6  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 efsep.3 . . . . . . . 8  |-  M  e. 
NN0
43nn0zi 8833 . . . . . . 7  |-  M  e.  ZZ
54a1i 9 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 eqidd 2090 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
7 eluznn0 9147 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
83, 7mpan 416 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  NN0 )
9 efsep.4 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
10 efsep.1 . . . . . . . . . 10  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1110eftvalcn 11008 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
129, 11sylan 278 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
13 eftcl 11005 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
149, 13sylan 278 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
1512, 14eqeltrd 2165 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
168, 15sylan2 281 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
1710eftlcvg 11038 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
189, 3, 17sylancl 405 . . . . . 6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
192, 5, 6, 16, 18isum1p 10947 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( F `
 M )  + 
sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  k ) ) )
2010eftvalcn 11008 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( F `  M
)  =  ( ( A ^ M )  /  ( ! `  M ) ) )
219, 3, 20sylancl 405 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( ( A ^ M )  /  ( ! `  M ) ) )
22 efsep.2 . . . . . . . . . 10  |-  N  =  ( M  +  1 )
2322eqcomi 2093 . . . . . . . . 9  |-  ( M  +  1 )  =  N
2423fveq2i 5321 . . . . . . . 8  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  N )
2524sumeq1i 10813 . . . . . . 7  |-  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  k
)  =  sum_ k  e.  ( ZZ>= `  N )
( F `  k
)
2625a1i 9 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  k )  =  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) )
2721, 26oveq12d 5684 . . . . 5  |-  ( ph  ->  ( ( F `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 k ) )  =  ( ( ( A ^ M )  /  ( ! `  M ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
2819, 27eqtrd 2121 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( ( A ^ M )  /  ( ! `  M ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
2928oveq2d 5682 . . 3  |-  ( ph  ->  ( B  +  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  =  ( B  +  ( ( ( A ^ M )  / 
( ! `  M
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) ) )
30 efsep.5 . . . 4  |-  ( ph  ->  B  e.  CC )
31 eftcl 11005 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  /  ( ! `  M )
)  e.  CC )
329, 3, 31sylancl 405 . . . 4  |-  ( ph  ->  ( ( A ^ M )  /  ( ! `  M )
)  e.  CC )
33 peano2nn0 8774 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
343, 33ax-mp 7 . . . . . 6  |-  ( M  +  1 )  e. 
NN0
3522, 34eqeltri 2161 . . . . 5  |-  N  e. 
NN0
3610eftlcl 11039 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k )  e.  CC )
379, 35, 36sylancl 405 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k )  e.  CC )
3830, 32, 37addassd 7571 . . 3  |-  ( ph  ->  ( ( B  +  ( ( A ^ M )  /  ( ! `  M )
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) )  =  ( B  +  ( ( ( A ^ M )  / 
( ! `  M
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) ) )
3929, 38eqtr4d 2124 . 2  |-  ( ph  ->  ( B  +  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  =  ( ( B  +  ( ( A ^ M )  / 
( ! `  M
) ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
40 efsep.7 . . 3  |-  ( ph  ->  ( B  +  ( ( A ^ M
)  /  ( ! `
 M ) ) )  =  D )
4140oveq1d 5681 . 2  |-  ( ph  ->  ( ( B  +  ( ( A ^ M )  /  ( ! `  M )
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) )  =  ( D  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) )
421, 39, 413eqtrd 2125 1  |-  ( ph  ->  ( exp `  A
)  =  ( D  +  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    |-> cmpt 3905   dom cdm 4452   ` cfv 5028  (class class class)co 5666   CCcc 7409   1c1 7412    + caddc 7414    / cdiv 8200   NN0cn0 8734   ZZcz 8811   ZZ>=cuz 9080    seqcseq 9913   ^cexp 10015   !cfa 10194    ~~> cli 10727   sum_csu 10803   expce 10993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  ef4p  11045
  Copyright terms: Public domain W3C validator