ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efsep Unicode version

Theorem efsep 12117
Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efsep.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efsep.2  |-  N  =  ( M  +  1 )
efsep.3  |-  M  e. 
NN0
efsep.4  |-  ( ph  ->  A  e.  CC )
efsep.5  |-  ( ph  ->  B  e.  CC )
efsep.6  |-  ( ph  ->  ( exp `  A
)  =  ( B  +  sum_ k  e.  (
ZZ>= `  M ) ( F `  k ) ) )
efsep.7  |-  ( ph  ->  ( B  +  ( ( A ^ M
)  /  ( ! `
 M ) ) )  =  D )
Assertion
Ref Expression
efsep  |-  ( ph  ->  ( exp `  A
)  =  ( D  +  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
Distinct variable groups:    k, n, A   
k, F    k, M, n    k, N, n    ph, k
Allowed substitution hints:    ph( n)    B( k, n)    D( k, n)    F( n)

Proof of Theorem efsep
StepHypRef Expression
1 efsep.6 . 2  |-  ( ph  ->  ( exp `  A
)  =  ( B  +  sum_ k  e.  (
ZZ>= `  M ) ( F `  k ) ) )
2 eqid 2207 . . . . . 6  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3 efsep.3 . . . . . . . 8  |-  M  e. 
NN0
43nn0zi 9429 . . . . . . 7  |-  M  e.  ZZ
54a1i 9 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 eqidd 2208 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
7 eluznn0 9755 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
83, 7mpan 424 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  NN0 )
9 efsep.4 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
10 efsep.1 . . . . . . . . . 10  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1110eftvalcn 12083 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
129, 11sylan 283 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
13 eftcl 12080 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
149, 13sylan 283 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
1512, 14eqeltrd 2284 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
168, 15sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
1710eftlcvg 12113 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
189, 3, 17sylancl 413 . . . . . 6  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
192, 5, 6, 16, 18isum1p 11918 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( F `
 M )  + 
sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  k ) ) )
2010eftvalcn 12083 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( F `  M
)  =  ( ( A ^ M )  /  ( ! `  M ) ) )
219, 3, 20sylancl 413 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  ( ( A ^ M )  /  ( ! `  M ) ) )
22 efsep.2 . . . . . . . . . 10  |-  N  =  ( M  +  1 )
2322eqcomi 2211 . . . . . . . . 9  |-  ( M  +  1 )  =  N
2423fveq2i 5602 . . . . . . . 8  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  N )
2524sumeq1i 11789 . . . . . . 7  |-  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  k
)  =  sum_ k  e.  ( ZZ>= `  N )
( F `  k
)
2625a1i 9 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  k )  =  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) )
2721, 26oveq12d 5985 . . . . 5  |-  ( ph  ->  ( ( F `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 k ) )  =  ( ( ( A ^ M )  /  ( ! `  M ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
2819, 27eqtrd 2240 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( F `  k )  =  ( ( ( A ^ M )  /  ( ! `  M ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
2928oveq2d 5983 . . 3  |-  ( ph  ->  ( B  +  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  =  ( B  +  ( ( ( A ^ M )  / 
( ! `  M
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) ) )
30 efsep.5 . . . 4  |-  ( ph  ->  B  e.  CC )
31 eftcl 12080 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( ( A ^ M )  /  ( ! `  M )
)  e.  CC )
329, 3, 31sylancl 413 . . . 4  |-  ( ph  ->  ( ( A ^ M )  /  ( ! `  M )
)  e.  CC )
33 peano2nn0 9370 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
343, 33ax-mp 5 . . . . . 6  |-  ( M  +  1 )  e. 
NN0
3522, 34eqeltri 2280 . . . . 5  |-  N  e. 
NN0
3610eftlcl 12114 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k )  e.  CC )
379, 35, 36sylancl 413 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k )  e.  CC )
3830, 32, 37addassd 8130 . . 3  |-  ( ph  ->  ( ( B  +  ( ( A ^ M )  /  ( ! `  M )
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) )  =  ( B  +  ( ( ( A ^ M )  / 
( ! `  M
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) ) )
3929, 38eqtr4d 2243 . 2  |-  ( ph  ->  ( B  +  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  =  ( ( B  +  ( ( A ^ M )  / 
( ! `  M
) ) )  + 
sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
40 efsep.7 . . 3  |-  ( ph  ->  ( B  +  ( ( A ^ M
)  /  ( ! `
 M ) ) )  =  D )
4140oveq1d 5982 . 2  |-  ( ph  ->  ( ( B  +  ( ( A ^ M )  /  ( ! `  M )
) )  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) )  =  ( D  +  sum_ k  e.  ( ZZ>= `  N ) ( F `
 k ) ) )
421, 39, 413eqtrd 2244 1  |-  ( ph  ->  ( exp `  A
)  =  ( D  +  sum_ k  e.  (
ZZ>= `  N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    |-> cmpt 4121   dom cdm 4693   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    / cdiv 8780   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629   ^cexp 10720   !cfa 10907    ~~> cli 11704   sum_csu 11779   expce 12068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  ef4p  12120  dveflem  15313
  Copyright terms: Public domain W3C validator