ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumnn0nn Unicode version

Theorem isumnn0nn 11520
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumnn0nn.1  |-  ( k  =  0  ->  A  =  B )
isumnn0nn.2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  A )
isumnn0nn.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
isumnn0nn.4  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumnn0nn  |-  ( ph  -> 
sum_ k  e.  NN0  A  =  ( B  +  sum_ k  e.  NN  A
) )
Distinct variable groups:    k, F    B, k    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem isumnn0nn
StepHypRef Expression
1 nn0uz 9581 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9284 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 isumnn0nn.2 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  A )
4 isumnn0nn.3 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  A  e.  CC )
5 isumnn0nn.4 . . 3  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
61, 2, 3, 4, 5isum1p 11519 . 2  |-  ( ph  -> 
sum_ k  e.  NN0  A  =  ( ( F `
 0 )  + 
sum_ k  e.  (
ZZ>= `  ( 0  +  1 ) ) A ) )
7 fveq2 5530 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
8 isumnn0nn.1 . . . . 5  |-  ( k  =  0  ->  A  =  B )
97, 8eqeq12d 2204 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  =  A  <->  ( F `  0 )  =  B ) )
103ralrimiva 2563 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( F `  k )  =  A )
11 0nn0 9210 . . . . 5  |-  0  e.  NN0
1211a1i 9 . . . 4  |-  ( ph  ->  0  e.  NN0 )
139, 10, 12rspcdva 2861 . . 3  |-  ( ph  ->  ( F `  0
)  =  B )
14 0p1e1 9052 . . . . . . 7  |-  ( 0  +  1 )  =  1
1514fveq2i 5533 . . . . . 6  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
16 nnuz 9582 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1715, 16eqtr4i 2213 . . . . 5  |-  ( ZZ>= `  ( 0  +  1 ) )  =  NN
1817sumeq1i 11390 . . . 4  |-  sum_ k  e.  ( ZZ>= `  ( 0  +  1 ) ) A  =  sum_ k  e.  NN  A
1918a1i 9 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( 0  +  1 ) ) A  =  sum_ k  e.  NN  A )
2013, 19oveq12d 5909 . 2  |-  ( ph  ->  ( ( F ` 
0 )  +  sum_ k  e.  ( ZZ>= `  ( 0  +  1 ) ) A )  =  ( B  +  sum_ k  e.  NN  A
) )
216, 20eqtrd 2222 1  |-  ( ph  -> 
sum_ k  e.  NN0  A  =  ( B  +  sum_ k  e.  NN  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   dom cdm 4641   ` cfv 5231  (class class class)co 5891   CCcc 7828   0cc0 7830   1c1 7831    + caddc 7833   NNcn 8938   NN0cn0 9195   ZZ>=cuz 9547    seqcseq 10464    ~~> cli 11305   sum_csu 11380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-q 9639  df-rp 9673  df-fz 10028  df-fzo 10162  df-seqfrec 10465  df-exp 10539  df-ihash 10775  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027  df-clim 11306  df-sumdc 11381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator