ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumi Unicode version

Theorem cbvsumi 11338
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
Hypotheses
Ref Expression
cbvsumi.1  |-  F/_ k B
cbvsumi.2  |-  F/_ j C
cbvsumi.3  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumi  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable group:    j, k, A
Allowed substitution hints:    B( j, k)    C( j, k)

Proof of Theorem cbvsumi
StepHypRef Expression
1 cbvsumi.3 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2317 . 2  |-  F/_ k A
3 nfcv 2317 . 2  |-  F/_ j A
4 cbvsumi.1 . 2  |-  F/_ k B
5 cbvsumi.2 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 11336 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   F/_wnfc 2304   sum_csu 11329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-seqfrec 10416  df-sumdc 11330
This theorem is referenced by:  sumfct  11350  isumss2  11369  fsumzcl2  11381  fsumsplitf  11384  sumsnf  11385  sumsns  11391  fsumsplitsnun  11395  fsum2dlemstep  11410  fisumcom2  11414  fsumshftm  11421  fsumiun  11453
  Copyright terms: Public domain W3C validator