ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsumi Unicode version

Theorem cbvsumi 10812
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
Hypotheses
Ref Expression
cbvsumi.1  |-  F/_ k B
cbvsumi.2  |-  F/_ j C
cbvsumi.3  |-  ( j  =  k  ->  B  =  C )
Assertion
Ref Expression
cbvsumi  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Distinct variable group:    j, k, A
Allowed substitution hints:    B( j, k)    C( j, k)

Proof of Theorem cbvsumi
StepHypRef Expression
1 cbvsumi.3 . 2  |-  ( j  =  k  ->  B  =  C )
2 nfcv 2229 . 2  |-  F/_ k A
3 nfcv 2229 . 2  |-  F/_ j A
4 cbvsumi.1 . 2  |-  F/_ k B
5 cbvsumi.2 . 2  |-  F/_ j C
61, 2, 3, 4, 5cbvsum 10810 1  |-  sum_ j  e.  A  B  =  sum_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290   F/_wnfc 2216   sum_csu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-in 3006  df-ss 3013  df-if 3398  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-iota 4993  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-recs 6084  df-frec 6170  df-iseq 9914  df-isum 10804
This theorem is referenced by:  sumfct  10824  isumss2  10846  fsumzcl2  10860  fsumsplitf  10863  sumsnf  10864  sumsns  10870  fsumsplitsnun  10874  fsum2dlemstep  10889  fisumcom2  10893  fsumshftm  10900  fsumiun  10932
  Copyright terms: Public domain W3C validator