ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsspw Unicode version

Theorem restsspw 12566
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw  |-  ( Jt  A )  C_  ~P A

Proof of Theorem restsspw
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12558 . . . . . . 7  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
21elmpocl 6036 . . . . . 6  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
3 elrest 12563 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
42, 3syl 14 . . . . 5  |-  ( x  e.  ( Jt  A )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
54ibi 175 . . . 4  |-  ( x  e.  ( Jt  A )  ->  E. y  e.  J  x  =  ( y  i^i  A ) )
6 inss2 3343 . . . . . 6  |-  ( y  i^i  A )  C_  A
7 sseq1 3165 . . . . . 6  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  A  <->  ( y  i^i  A )  C_  A
) )
86, 7mpbiri 167 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  A )
98rexlimivw 2579 . . . 4  |-  ( E. y  e.  J  x  =  ( y  i^i 
A )  ->  x  C_  A )
105, 9syl 14 . . 3  |-  ( x  e.  ( Jt  A )  ->  x  C_  A
)
11 velpw 3566 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11sylibr 133 . 2  |-  ( x  e.  ( Jt  A )  ->  x  e.  ~P A )
1312ssriv 3146 1  |-  ( Jt  A )  C_  ~P A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559    |-> cmpt 4043   ran crn 4605  (class class class)co 5842   ↾t crest 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-rest 12558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator