ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsspw Unicode version

Theorem restsspw 12860
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw  |-  ( Jt  A )  C_  ~P A

Proof of Theorem restsspw
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12852 . . . . . . 7  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
21elmpocl 6113 . . . . . 6  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
3 elrest 12857 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
42, 3syl 14 . . . . 5  |-  ( x  e.  ( Jt  A )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
54ibi 176 . . . 4  |-  ( x  e.  ( Jt  A )  ->  E. y  e.  J  x  =  ( y  i^i  A ) )
6 inss2 3380 . . . . . 6  |-  ( y  i^i  A )  C_  A
7 sseq1 3202 . . . . . 6  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  A  <->  ( y  i^i  A )  C_  A
) )
86, 7mpbiri 168 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  A )
98rexlimivw 2607 . . . 4  |-  ( E. y  e.  J  x  =  ( y  i^i 
A )  ->  x  C_  A )
105, 9syl 14 . . 3  |-  ( x  e.  ( Jt  A )  ->  x  C_  A
)
11 velpw 3608 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11sylibr 134 . 2  |-  ( x  e.  ( Jt  A )  ->  x  e.  ~P A )
1312ssriv 3183 1  |-  ( Jt  A )  C_  ~P A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760    i^i cin 3152    C_ wss 3153   ~Pcpw 3601    |-> cmpt 4090   ran crn 4660  (class class class)co 5918   ↾t crest 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-rest 12852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator