ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsspw Unicode version

Theorem restsspw 12502
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw  |-  ( Jt  A )  C_  ~P A

Proof of Theorem restsspw
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12494 . . . . . . 7  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
21elmpocl 6030 . . . . . 6  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
3 elrest 12499 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
42, 3syl 14 . . . . 5  |-  ( x  e.  ( Jt  A )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
54ibi 175 . . . 4  |-  ( x  e.  ( Jt  A )  ->  E. y  e.  J  x  =  ( y  i^i  A ) )
6 inss2 3338 . . . . . 6  |-  ( y  i^i  A )  C_  A
7 sseq1 3160 . . . . . 6  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  A  <->  ( y  i^i  A )  C_  A
) )
86, 7mpbiri 167 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  A )
98rexlimivw 2577 . . . 4  |-  ( E. y  e.  J  x  =  ( y  i^i 
A )  ->  x  C_  A )
105, 9syl 14 . . 3  |-  ( x  e.  ( Jt  A )  ->  x  C_  A
)
11 velpw 3560 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11sylibr 133 . 2  |-  ( x  e.  ( Jt  A )  ->  x  e.  ~P A )
1312ssriv 3141 1  |-  ( Jt  A )  C_  ~P A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   E.wrex 2443   _Vcvv 2721    i^i cin 3110    C_ wss 3111   ~Pcpw 3553    |-> cmpt 4037   ran crn 4599  (class class class)co 5836   ↾t crest 12492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-rest 12494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator