ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restsspw Unicode version

Theorem restsspw 12703
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
restsspw  |-  ( Jt  A )  C_  ~P A

Proof of Theorem restsspw
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 12695 . . . . . . 7  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
21elmpocl 6071 . . . . . 6  |-  ( x  e.  ( Jt  A )  ->  ( J  e. 
_V  /\  A  e.  _V ) )
3 elrest 12700 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
42, 3syl 14 . . . . 5  |-  ( x  e.  ( Jt  A )  ->  ( x  e.  ( Jt  A )  <->  E. y  e.  J  x  =  ( y  i^i  A
) ) )
54ibi 176 . . . 4  |-  ( x  e.  ( Jt  A )  ->  E. y  e.  J  x  =  ( y  i^i  A ) )
6 inss2 3358 . . . . . 6  |-  ( y  i^i  A )  C_  A
7 sseq1 3180 . . . . . 6  |-  ( x  =  ( y  i^i 
A )  ->  (
x  C_  A  <->  ( y  i^i  A )  C_  A
) )
86, 7mpbiri 168 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  x  C_  A )
98rexlimivw 2590 . . . 4  |-  ( E. y  e.  J  x  =  ( y  i^i 
A )  ->  x  C_  A )
105, 9syl 14 . . 3  |-  ( x  e.  ( Jt  A )  ->  x  C_  A
)
11 velpw 3584 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11sylibr 134 . 2  |-  ( x  e.  ( Jt  A )  ->  x  e.  ~P A )
1312ssriv 3161 1  |-  ( Jt  A )  C_  ~P A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2739    i^i cin 3130    C_ wss 3131   ~Pcpw 3577    |-> cmpt 4066   ran crn 4629  (class class class)co 5877   ↾t crest 12693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-rest 12695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator