ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopn0 GIF version

Theorem mopn0 12689
Description: The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopn0 (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽)

Proof of Theorem mopn0
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 12645 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3 0opn 12205 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
42, 3syl 14 1 (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  c0 3366  cfv 5129  ∞Metcxmet 12181  MetOpencmopn 12186  Topctop 12196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-nul 4060  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-iinf 4508  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-mulrcl 7741  ax-addcom 7742  ax-mulcom 7743  ax-addass 7744  ax-mulass 7745  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-1rid 7749  ax-0id 7750  ax-rnegex 7751  ax-precex 7752  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758  ax-pre-mulgt0 7759  ax-pre-mulext 7760  ax-arch 7761  ax-caucvg 7762
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-if 3478  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-po 4224  df-iso 4225  df-iord 4294  df-on 4296  df-ilim 4297  df-suc 4299  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-isom 5138  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-recs 6208  df-frec 6294  df-map 6550  df-sup 6877  df-inf 6878  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-reap 8359  df-ap 8366  df-div 8455  df-inn 8743  df-2 8801  df-3 8802  df-4 8803  df-n0 9000  df-z 9077  df-uz 9349  df-q 9437  df-rp 9469  df-xneg 9587  df-xadd 9588  df-seqfrec 10248  df-exp 10322  df-cj 10644  df-re 10645  df-im 10646  df-rsqrt 10800  df-abs 10801  df-topgen 12173  df-psmet 12188  df-xmet 12189  df-bl 12191  df-mopn 12192  df-top 12197  df-topon 12210  df-bases 12242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator