ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletr GIF version

Theorem xrletr 9883
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem xrletr
StepHypRef Expression
1 xrltso 9871 . . . . . 6 < Or ℝ*
2 sowlin 4355 . . . . . 6 (( < Or ℝ* ∧ (𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
31, 2mpan 424 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
433coml 1212 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
5 orcom 729 . . . 4 ((𝐶 < 𝐵𝐵 < 𝐴) ↔ (𝐵 < 𝐴𝐶 < 𝐵))
64, 5imbitrdi 161 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐵 < 𝐴𝐶 < 𝐵)))
76con3d 632 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐵 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < 𝐴))
8 xrlenlt 8091 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
983adant3 1019 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
10 xrlenlt 8091 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
11103adant1 1017 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
129, 11anbi12d 473 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
13 ioran 753 . . 3 (¬ (𝐵 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
1412, 13bitr4di 198 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ ¬ (𝐵 < 𝐴𝐶 < 𝐵)))
15 xrlenlt 8091 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
16153adant2 1018 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
177, 14, 163imtr4d 203 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2167   class class class wbr 4033   Or wor 4330  *cxr 8060   < clt 8061  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-po 4331  df-iso 4332  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  xrletrd  9887  xle2add  9954  icc0r  10001  iccss  10016  icossico  10018  iccss2  10019  iccssico  10020  bdxmet  14737
  Copyright terms: Public domain W3C validator