ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletr GIF version

Theorem xrletr 9943
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem xrletr
StepHypRef Expression
1 xrltso 9931 . . . . . 6 < Or ℝ*
2 sowlin 4372 . . . . . 6 (( < Or ℝ* ∧ (𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
31, 2mpan 424 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
433coml 1213 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
5 orcom 730 . . . 4 ((𝐶 < 𝐵𝐵 < 𝐴) ↔ (𝐵 < 𝐴𝐶 < 𝐵))
64, 5imbitrdi 161 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐵 < 𝐴𝐶 < 𝐵)))
76con3d 632 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐵 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < 𝐴))
8 xrlenlt 8150 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
983adant3 1020 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
10 xrlenlt 8150 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
11103adant1 1018 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
129, 11anbi12d 473 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
13 ioran 754 . . 3 (¬ (𝐵 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
1412, 13bitr4di 198 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ ¬ (𝐵 < 𝐴𝐶 < 𝐵)))
15 xrlenlt 8150 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
16153adant2 1019 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
177, 14, 163imtr4d 203 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981  wcel 2177   class class class wbr 4048   Or wor 4347  *cxr 8119   < clt 8120  cle 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-po 4348  df-iso 4349  df-xp 4686  df-cnv 4688  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126
This theorem is referenced by:  xrletrd  9947  xle2add  10014  icc0r  10061  iccss  10076  icossico  10078  iccss2  10079  iccssico  10080  bdxmet  15023
  Copyright terms: Public domain W3C validator