![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrletr | GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
Ref | Expression |
---|---|
xrletr | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 9828 | . . . . . 6 ⊢ < Or ℝ* | |
2 | sowlin 4338 | . . . . . 6 ⊢ (( < Or ℝ* ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) | |
3 | 1, 2 | mpan 424 | . . . . 5 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
4 | 3 | 3coml 1212 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
5 | orcom 729 | . . . 4 ⊢ ((𝐶 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵)) | |
6 | 4, 5 | imbitrdi 161 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
7 | 6 | con3d 632 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < 𝐴)) |
8 | xrlenlt 8053 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
9 | 8 | 3adant3 1019 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
10 | xrlenlt 8053 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
11 | 10 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
12 | 9, 11 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
13 | ioran 753 | . . 3 ⊢ (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) | |
14 | 12, 13 | bitr4di 198 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ ¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
15 | xrlenlt 8053 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) | |
16 | 15 | 3adant2 1018 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
17 | 7, 14, 16 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2160 class class class wbr 4018 Or wor 4313 ℝ*cxr 8022 < clt 8023 ≤ cle 8024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-po 4314 df-iso 4315 df-xp 4650 df-cnv 4652 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 |
This theorem is referenced by: xrletrd 9844 xle2add 9911 icc0r 9958 iccss 9973 icossico 9975 iccss2 9976 iccssico 9977 bdxmet 14478 |
Copyright terms: Public domain | W3C validator |