ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletr GIF version

Theorem xrletr 9584
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem xrletr
StepHypRef Expression
1 xrltso 9575 . . . . . 6 < Or ℝ*
2 sowlin 4237 . . . . . 6 (( < Or ℝ* ∧ (𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
31, 2mpan 420 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
433coml 1188 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
5 orcom 717 . . . 4 ((𝐶 < 𝐵𝐵 < 𝐴) ↔ (𝐵 < 𝐴𝐶 < 𝐵))
64, 5syl6ib 160 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐴 → (𝐵 < 𝐴𝐶 < 𝐵)))
76con3d 620 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐵 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < 𝐴))
8 xrlenlt 7822 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
983adant3 1001 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
10 xrlenlt 7822 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
11103adant1 999 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
129, 11anbi12d 464 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
13 ioran 741 . . 3 (¬ (𝐵 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
1412, 13syl6bbr 197 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) ↔ ¬ (𝐵 < 𝐴𝐶 < 𝐵)))
15 xrlenlt 7822 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
16153adant2 1000 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
177, 14, 163imtr4d 202 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962  wcel 1480   class class class wbr 3924   Or wor 4212  *cxr 7792   < clt 7793  cle 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-po 4213  df-iso 4214  df-xp 4540  df-cnv 4542  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799
This theorem is referenced by:  xrletrd  9588  xle2add  9655  icc0r  9702  iccss  9717  icossico  9719  iccss2  9720  iccssico  9721  bdxmet  12659
  Copyright terms: Public domain W3C validator