![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsnegb | GIF version |
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsnegb | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
2 | znegcl 9351 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
3 | 2 | anim2i 342 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) |
4 | znegcl 9351 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | 4 | adantl 277 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
6 | zcn 9325 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
7 | zcn 9325 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | mulneg1 8416 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = -(𝑥 · 𝑀)) | |
9 | negeq 8214 | . . . . . . 7 ⊢ ((𝑥 · 𝑀) = 𝑁 → -(𝑥 · 𝑀) = -𝑁) | |
10 | 9 | eqeq2d 2205 | . . . . . 6 ⊢ ((𝑥 · 𝑀) = 𝑁 → ((-𝑥 · 𝑀) = -(𝑥 · 𝑀) ↔ (-𝑥 · 𝑀) = -𝑁)) |
11 | 8, 10 | syl5ibcom 155 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
12 | 6, 7, 11 | syl2anr 290 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
13 | 12 | adantlr 477 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
14 | 1, 3, 5, 13 | dvds1lem 11948 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → 𝑀 ∥ -𝑁)) |
15 | zcn 9325 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
16 | negeq 8214 | . . . . . . . . . 10 ⊢ ((𝑥 · 𝑀) = -𝑁 → -(𝑥 · 𝑀) = --𝑁) | |
17 | negneg 8271 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → --𝑁 = 𝑁) | |
18 | 16, 17 | sylan9eqr 2248 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁) → -(𝑥 · 𝑀) = 𝑁) |
19 | 8, 18 | sylan9eq 2246 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁)) → (-𝑥 · 𝑀) = 𝑁) |
20 | 19 | expr 375 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
21 | 20 | 3impa 1196 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
22 | 6, 7, 15, 21 | syl3an 1291 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
23 | 22 | 3coml 1212 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
24 | 23 | 3expa 1205 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
25 | 3, 1, 5, 24 | dvds1lem 11948 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ -𝑁 → 𝑀 ∥ 𝑁)) |
26 | 14, 25 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 · cmul 7879 -cneg 8193 ℤcz 9320 ∥ cdvds 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-z 9321 df-dvds 11934 |
This theorem is referenced by: dvdsabsb 11956 dvdssub 11984 dvdsadd2b 11986 gcdneg 12122 bezoutlemaz 12143 bezoutlembz 12144 prmdiv 12376 pcneg 12466 znunit 14158 |
Copyright terms: Public domain | W3C validator |