| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsnegb | GIF version | ||
| Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsnegb | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | znegcl 9357 | . . . 4 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 3 | 2 | anim2i 342 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ)) |
| 4 | znegcl 9357 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ) |
| 6 | zcn 9331 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 7 | zcn 9331 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 8 | mulneg1 8421 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = -(𝑥 · 𝑀)) | |
| 9 | negeq 8219 | . . . . . . 7 ⊢ ((𝑥 · 𝑀) = 𝑁 → -(𝑥 · 𝑀) = -𝑁) | |
| 10 | 9 | eqeq2d 2208 | . . . . . 6 ⊢ ((𝑥 · 𝑀) = 𝑁 → ((-𝑥 · 𝑀) = -(𝑥 · 𝑀) ↔ (-𝑥 · 𝑀) = -𝑁)) |
| 11 | 8, 10 | syl5ibcom 155 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
| 12 | 6, 7, 11 | syl2anr 290 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
| 13 | 12 | adantlr 477 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁)) |
| 14 | 1, 3, 5, 13 | dvds1lem 11967 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → 𝑀 ∥ -𝑁)) |
| 15 | zcn 9331 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 16 | negeq 8219 | . . . . . . . . . 10 ⊢ ((𝑥 · 𝑀) = -𝑁 → -(𝑥 · 𝑀) = --𝑁) | |
| 17 | negneg 8276 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → --𝑁 = 𝑁) | |
| 18 | 16, 17 | sylan9eqr 2251 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁) → -(𝑥 · 𝑀) = 𝑁) |
| 19 | 8, 18 | sylan9eq 2249 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁)) → (-𝑥 · 𝑀) = 𝑁) |
| 20 | 19 | expr 375 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
| 21 | 20 | 3impa 1196 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
| 22 | 6, 7, 15, 21 | syl3an 1291 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
| 23 | 22 | 3coml 1212 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
| 24 | 23 | 3expa 1205 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁)) |
| 25 | 3, 1, 5, 24 | dvds1lem 11967 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ -𝑁 → 𝑀 ∥ 𝑁)) |
| 26 | 14, 25 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7877 · cmul 7884 -cneg 8198 ℤcz 9326 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 df-dvds 11953 |
| This theorem is referenced by: dvdsabsb 11975 dvdssub 12003 dvdsadd2b 12005 3dvds 12029 gcdneg 12149 bezoutlemaz 12170 bezoutlembz 12171 prmdiv 12403 pcneg 12494 znunit 14215 |
| Copyright terms: Public domain | W3C validator |