ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnegb GIF version

Theorem dvdsnegb 12327
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))

Proof of Theorem dvdsnegb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 9485 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
32anim2i 342 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ))
4 znegcl 9485 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 9459 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 9459 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mulneg1 8549 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = -(𝑥 · 𝑀))
9 negeq 8347 . . . . . . 7 ((𝑥 · 𝑀) = 𝑁 → -(𝑥 · 𝑀) = -𝑁)
109eqeq2d 2241 . . . . . 6 ((𝑥 · 𝑀) = 𝑁 → ((-𝑥 · 𝑀) = -(𝑥 · 𝑀) ↔ (-𝑥 · 𝑀) = -𝑁))
118, 10syl5ibcom 155 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
126, 7, 11syl2anr 290 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
1312adantlr 477 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
141, 3, 5, 13dvds1lem 12321 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
15 zcn 9459 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 negeq 8347 . . . . . . . . . 10 ((𝑥 · 𝑀) = -𝑁 → -(𝑥 · 𝑀) = --𝑁)
17 negneg 8404 . . . . . . . . . 10 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
1816, 17sylan9eqr 2284 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁) → -(𝑥 · 𝑀) = 𝑁)
198, 18sylan9eq 2282 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁)) → (-𝑥 · 𝑀) = 𝑁)
2019expr 375 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
21203impa 1218 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
226, 7, 15, 21syl3an 1313 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
23223coml 1234 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
24233expa 1227 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
253, 1, 5, 24dvds1lem 12321 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ -𝑁𝑀𝑁))
2614, 25impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005   · cmul 8012  -cneg 8326  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-z 9455  df-dvds 12307
This theorem is referenced by:  dvdsabsb  12329  dvdssub  12357  dvdsadd2b  12359  3dvds  12383  bitscmp  12477  gcdneg  12511  bezoutlemaz  12532  bezoutlembz  12533  prmdiv  12765  pcneg  12856  znunit  14631
  Copyright terms: Public domain W3C validator