| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzrevral2 | GIF version | ||
| Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
| Ref | Expression |
|---|---|
| fzrevral2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 9448 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑁) ∈ ℤ) | |
| 2 | 1 | 3adant2 1019 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑁) ∈ ℤ) |
| 3 | zsubcl 9448 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 − 𝑀) ∈ ℤ) | |
| 4 | 3 | 3adant3 1020 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑀) ∈ ℤ) |
| 5 | simp1 1000 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
| 6 | fzrevral 10262 | . . . 4 ⊢ (((𝐾 − 𝑁) ∈ ℤ ∧ (𝐾 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑)) | |
| 7 | 2, 4, 5, 6 | syl3anc 1250 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑)) |
| 8 | zcn 9412 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 9 | zcn 9412 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 10 | zcn 9412 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 11 | nncan 8336 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (𝐾 − 𝑀)) = 𝑀) | |
| 12 | 11 | 3adant3 1020 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑀)) = 𝑀) |
| 13 | nncan 8336 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑁)) = 𝑁) | |
| 14 | 13 | 3adant2 1019 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑁)) = 𝑁) |
| 15 | 12, 14 | oveq12d 5985 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁))) = (𝑀...𝑁)) |
| 16 | 8, 9, 10, 15 | syl3an 1292 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁))) = (𝑀...𝑁)) |
| 17 | 16 | raleqdv 2711 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
| 18 | 7, 17 | bitrd 188 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
| 19 | 18 | 3coml 1213 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∀wral 2486 [wsbc 3005 (class class class)co 5967 ℂcc 7958 − cmin 8278 ℤcz 9407 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |