ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral2 GIF version

Theorem fzrevral2 10228
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral2
StepHypRef Expression
1 zsubcl 9413 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
213adant2 1019 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
3 zsubcl 9413 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
433adant3 1020 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
5 simp1 1000 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
6 fzrevral 10227 . . . 4 (((𝐾𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑))
72, 4, 5, 6syl3anc 1250 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑))
8 zcn 9377 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 zcn 9377 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
10 zcn 9377 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
11 nncan 8301 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (𝐾𝑀)) = 𝑀)
12113adant3 1020 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑀)) = 𝑀)
13 nncan 8301 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑁)) = 𝑁)
14133adant2 1019 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑁)) = 𝑁)
1512, 14oveq12d 5962 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁))) = (𝑀...𝑁))
168, 9, 10, 15syl3an 1292 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁))) = (𝑀...𝑁))
1716raleqdv 2708 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
187, 17bitrd 188 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
19183coml 1213 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2176  wral 2484  [wsbc 2998  (class class class)co 5944  cc 7923  cmin 8243  cz 9372  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator