ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrevral2 GIF version

Theorem fzrevral2 10302
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzrevral2
StepHypRef Expression
1 zsubcl 9487 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
213adant2 1040 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁) ∈ ℤ)
3 zsubcl 9487 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
433adant3 1041 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
5 simp1 1021 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
6 fzrevral 10301 . . . 4 (((𝐾𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑))
72, 4, 5, 6syl3anc 1271 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑))
8 zcn 9451 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
9 zcn 9451 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
10 zcn 9451 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
11 nncan 8375 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (𝐾𝑀)) = 𝑀)
12113adant3 1041 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑀)) = 𝑀)
13 nncan 8375 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑁)) = 𝑁)
14133adant2 1040 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾𝑁)) = 𝑁)
1512, 14oveq12d 6019 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁))) = (𝑀...𝑁))
168, 9, 10, 15syl3an 1313 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁))) = (𝑀...𝑁))
1716raleqdv 2734 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (𝐾𝑀))...(𝐾 − (𝐾𝑁)))[(𝐾𝑘) / 𝑗]𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
187, 17bitrd 188 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
19183coml 1234 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  [wsbc 3028  (class class class)co 6001  cc 7997  cmin 8317  cz 9446  ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator