![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mettri | GIF version |
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
mettri | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mettri2 14319 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | |
2 | 1 | expcom 116 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))) |
3 | 2 | 3coml 1212 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))) |
4 | 3 | impcom 125 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
5 | metsym 14328 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴)) | |
6 | 5 | 3adant3r2 1215 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴)) |
7 | 6 | oveq1d 5911 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
8 | 4, 7 | breqtrrd 4046 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 + caddc 7844 ≤ cle 8023 Metcmet 13850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 ax-0id 7949 ax-rnegex 7950 ax-pre-ltirr 7953 ax-pre-apti 7956 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-map 6676 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-xadd 9803 df-xmet 13857 df-met 13858 |
This theorem is referenced by: mettri3 14332 metrtri 14334 mstri 14430 |
Copyright terms: Public domain | W3C validator |