![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mettri | GIF version |
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
mettri | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mettri2 12348 | . . . . 5 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | |
2 | 1 | expcom 115 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))) |
3 | 2 | 3coml 1171 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐷 ∈ (Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))) |
4 | 3 | impcom 124 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
5 | metsym 12357 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴)) | |
6 | 5 | 3adant3r2 1174 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) = (𝐶𝐷𝐴)) |
7 | 6 | oveq1d 5743 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
8 | 4, 7 | breqtrrd 3921 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 ‘cfv 5081 (class class class)co 5728 + caddc 7547 ≤ cle 7722 Metcmet 11990 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7633 ax-resscn 7634 ax-1re 7636 ax-addrcl 7639 ax-0id 7650 ax-rnegex 7651 ax-pre-ltirr 7654 ax-pre-apti 7657 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-map 6498 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-xadd 9450 df-xmet 11997 df-met 11998 |
This theorem is referenced by: mettri3 12361 metrtri 12363 mstri 12459 |
Copyright terms: Public domain | W3C validator |