ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div13ap GIF version

Theorem div13ap 8583
Description: A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
div13ap ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))

Proof of Theorem div13ap
StepHypRef Expression
1 mulcom 7876 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
21oveq1d 5854 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) / 𝐵) = ((𝐶 · 𝐴) / 𝐵))
323adant2 1005 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) / 𝐵) = ((𝐶 · 𝐴) / 𝐵))
4 div23ap 8581 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 · 𝐶) / 𝐵) = ((𝐴 / 𝐵) · 𝐶))
543com23 1198 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) / 𝐵) = ((𝐴 / 𝐵) · 𝐶))
6 div23ap 8581 . . 3 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐶 · 𝐴) / 𝐵) = ((𝐶 / 𝐵) · 𝐴))
763coml 1199 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) / 𝐵) = ((𝐶 / 𝐵) · 𝐴))
83, 5, 73eqtr3d 2205 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135   class class class wbr 3979  (class class class)co 5839  cc 7745  0cc0 7747   · cmul 7752   # cap 8473   / cdiv 8562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-po 4271  df-iso 4272  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563
This theorem is referenced by:  div12ap  8584  div13apd  8705
  Copyright terms: Public domain W3C validator