Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letr | GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltwlin 7999 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) | |
2 | 1 | 3coml 1210 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
3 | orcom 728 | . . . 4 ⊢ ((𝐶 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵)) | |
4 | 2, 3 | syl6ib 161 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
5 | 4 | con3d 631 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < 𝐴)) |
6 | lenlt 8007 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
7 | 6 | 3adant3 1017 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
8 | lenlt 8007 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
9 | 8 | 3adant1 1015 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
10 | 7, 9 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
11 | ioran 752 | . . 3 ⊢ (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) | |
12 | 10, 11 | bitr4di 198 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ ¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
13 | lenlt 8007 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) | |
14 | 13 | 3adant2 1016 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
15 | 5, 12, 14 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∧ w3a 978 ∈ wcel 2146 class class class wbr 3998 ℝcr 7785 < clt 7966 ≤ cle 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltwlin 7899 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: letri 8039 letrd 8055 le2add 8375 le2sub 8392 p1le 8777 lemul12b 8789 lemul12a 8790 zletr 9273 peano2uz2 9331 ledivge1le 9695 fznlem 10009 elfz1b 10058 elfz0fzfz0 10094 fz0fzelfz0 10095 fz0fzdiffz0 10098 elfzmlbp 10100 difelfznle 10103 ssfzo12bi 10193 flqge 10250 fldiv4p1lem1div2 10273 monoord 10444 leexp2r 10542 expubnd 10545 le2sq2 10563 facwordi 10686 faclbnd3 10689 facavg 10692 fimaxre2 11201 fsumabs 11439 cvgratnnlemnexp 11498 cvgratnnlemmn 11499 algcvga 12016 prmdvdsfz 12104 prmfac1 12117 sincosq1lem 13797 |
Copyright terms: Public domain | W3C validator |