| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8160 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 2 | 1 | 3coml 1213 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 3 | orcom 730 | . . . 4 ⊢ ((𝐶 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵)) | |
| 4 | 2, 3 | imbitrdi 161 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
| 5 | 4 | con3d 632 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < 𝐴)) |
| 6 | lenlt 8168 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 7 | 6 | 3adant3 1020 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 8 | lenlt 8168 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
| 9 | 8 | 3adant1 1018 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
| 10 | 7, 9 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
| 11 | ioran 754 | . . 3 ⊢ (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) | |
| 12 | 10, 11 | bitr4di 198 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ ¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
| 13 | lenlt 8168 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) | |
| 14 | 13 | 3adant2 1019 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
| 15 | 5, 12, 14 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 ≤ cle 8128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltwlin 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: letri 8200 letrd 8216 le2add 8537 le2sub 8554 p1le 8942 lemul12b 8954 lemul12a 8955 zletr 9442 peano2uz2 9500 ledivge1le 9868 fznlem 10183 elfz1b 10232 elfz0fzfz0 10268 fz0fzelfz0 10269 fz0fzdiffz0 10272 elfzmlbp 10274 difelfznle 10277 elincfzoext 10344 ssfzo12bi 10376 flqge 10447 fldiv4p1lem1div2 10470 monoord 10652 leexp2r 10760 expubnd 10763 le2sq2 10782 facwordi 10907 faclbnd3 10910 facavg 10913 swrdswrdlem 11180 fimaxre2 11613 fsumabs 11851 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 algcvga 12448 prmdvdsfz 12536 prmfac1 12549 4sqlem11 12799 sincosq1lem 15372 gausslemma2dlem1a 15610 lgsquadlem1 15629 |
| Copyright terms: Public domain | W3C validator |