Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > letr | GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltwlin 7966 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) | |
2 | 1 | 3coml 1200 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
3 | orcom 718 | . . . 4 ⊢ ((𝐶 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵)) | |
4 | 2, 3 | syl6ib 160 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
5 | 4 | con3d 621 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < 𝐴)) |
6 | lenlt 7974 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
7 | 6 | 3adant3 1007 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
8 | lenlt 7974 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
9 | 8 | 3adant1 1005 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
10 | 7, 9 | anbi12d 465 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
11 | ioran 742 | . . 3 ⊢ (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) | |
12 | 10, 11 | bitr4di 197 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ ¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
13 | lenlt 7974 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) | |
14 | 13 | 3adant2 1006 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
15 | 5, 12, 14 | 3imtr4d 202 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: letri 8006 letrd 8022 le2add 8342 le2sub 8359 p1le 8744 lemul12b 8756 lemul12a 8757 zletr 9240 peano2uz2 9298 ledivge1le 9662 fznlem 9976 elfz1b 10025 elfz0fzfz0 10061 fz0fzelfz0 10062 fz0fzdiffz0 10065 elfzmlbp 10067 difelfznle 10070 ssfzo12bi 10160 flqge 10217 fldiv4p1lem1div2 10240 monoord 10411 leexp2r 10509 expubnd 10512 le2sq2 10530 facwordi 10653 faclbnd3 10656 facavg 10659 fimaxre2 11168 fsumabs 11406 cvgratnnlemnexp 11465 cvgratnnlemmn 11466 algcvga 11983 prmdvdsfz 12071 prmfac1 12084 sincosq1lem 13396 |
Copyright terms: Public domain | W3C validator |