ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letr GIF version

Theorem letr 7547
Description: Transitive law. (Contributed by NM, 12-Nov-1999.)
Assertion
Ref Expression
letr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem letr
StepHypRef Expression
1 axltwlin 7533 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
213coml 1150 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵𝐵 < 𝐴)))
3 orcom 682 . . . 4 ((𝐶 < 𝐵𝐵 < 𝐴) ↔ (𝐵 < 𝐴𝐶 < 𝐵))
42, 3syl6ib 159 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐵 < 𝐴𝐶 < 𝐵)))
54con3d 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐵 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < 𝐴))
6 lenlt 7540 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
763adant3 963 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
8 lenlt 7540 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
983adant1 961 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
107, 9anbi12d 457 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
11 ioran 704 . . 3 (¬ (𝐵 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
1210, 11syl6bbr 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) ↔ ¬ (𝐵 < 𝐴𝐶 < 𝐵)))
13 lenlt 7540 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
14133adant2 962 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
155, 12, 143imtr4d 201 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  w3a 924  wcel 1438   class class class wbr 3837  cr 7328   < clt 7501  cle 7502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-pre-ltwlin 7437
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507
This theorem is referenced by:  letri  7571  letrd  7586  le2add  7901  le2sub  7918  p1le  8282  lemul12b  8294  lemul12a  8295  zletr  8769  peano2uz2  8823  ledivge1le  9172  fznlem  9424  elfz1b  9471  elfz0fzfz0  9502  fz0fzelfz0  9503  fz0fzdiffz0  9506  elfzmlbp  9508  difelfznle  9511  ssfzo12bi  9601  flqge  9654  fldiv4p1lem1div2  9677  monoord  9869  leexp2r  9974  expubnd  9977  le2sq2  9995  facwordi  10113  faclbnd3  10116  facavg  10119  fimaxre2  10622  fsumabs  10822  ialgcvga  11115  prmdvdsfz  11202  prmfac1  11213
  Copyright terms: Public domain W3C validator