| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > letr | GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltwlin 8113 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 2 | 1 | 3coml 1212 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐶 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 3 | orcom 729 | . . . 4 ⊢ ((𝐶 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵)) | |
| 4 | 2, 3 | imbitrdi 161 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐴 → (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
| 5 | 4 | con3d 632 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) → ¬ 𝐶 < 𝐴)) |
| 6 | lenlt 8121 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 7 | 6 | 3adant3 1019 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 8 | lenlt 8121 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
| 9 | 8 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
| 10 | 7, 9 | anbi12d 473 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵))) |
| 11 | ioran 753 | . . 3 ⊢ (¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐶 < 𝐵)) | |
| 12 | 10, 11 | bitr4di 198 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ↔ ¬ (𝐵 < 𝐴 ∨ 𝐶 < 𝐵))) |
| 13 | lenlt 8121 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) | |
| 14 | 13 | 3adant2 1018 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴)) |
| 15 | 5, 12, 14 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltwlin 8011 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 |
| This theorem is referenced by: letri 8153 letrd 8169 le2add 8490 le2sub 8507 p1le 8895 lemul12b 8907 lemul12a 8908 zletr 9394 peano2uz2 9452 ledivge1le 9820 fznlem 10135 elfz1b 10184 elfz0fzfz0 10220 fz0fzelfz0 10221 fz0fzdiffz0 10224 elfzmlbp 10226 difelfznle 10229 ssfzo12bi 10320 flqge 10391 fldiv4p1lem1div2 10414 monoord 10596 leexp2r 10704 expubnd 10707 le2sq2 10726 facwordi 10851 faclbnd3 10854 facavg 10857 fimaxre2 11411 fsumabs 11649 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 algcvga 12246 prmdvdsfz 12334 prmfac1 12347 4sqlem11 12597 sincosq1lem 15169 gausslemma2dlem1a 15407 lgsquadlem1 15426 |
| Copyright terms: Public domain | W3C validator |